Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    DEVELOPMENT OF SUBSYSTEM SOFTWARE FOR RESEARCH OF EXPERIMENTAL CONSTRUCTIONS FOR THE FEMUR REINFORCING

  • Authors

    Prokopovich Igor V.
    Starushkevych Т.
    Savielieva O.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2020
    Issue 3(62)
    UDC 004.94:617.581
    DOI 10.15276/opu.3.62.2020.14
    Pages 119-128
  • Abstract

    Bone reinforcement is one of the most effective surgical interventions. In addition, development, improvement and production of implants aimed at creating high quality, reliable structures that can retain their functional properties for a long time. One of the most important stages in the development and design of implantable power structures is the biomechanical justification of their performance and reliability. The article presents the development and testing of a software subsystem for the study of experimental structures for preventive reinforcement of the femur, as well as the study of the peculiarities of the creation of such systems. The design subsystem, which is proposed in the article, is an auxiliary module for Ansys software, written in the Python programming language in the PyScripter environment. It allows you to build a qualitative picture of the stress-strain state in a selected volume of the femoral neck, to refine the grid of finite elements and set boundary conditions, which in turn used for mathematical calculation of the stress state. The study includes the calculation of stress states in the intact bilayer bone to identify critical points of onset of destruction of the cortical layer of bone. The created calculation module facilitates interaction with the software, allowing specifying more precisely necessary conditions of carrying out experiment. Based on the results obtained during the experiments, we can conclude about the usefulness of using both the created module and the created models. The results of the numerical experiment show better characteristics of the reinforced bone in contrast to the intact.

  • Keywords three-dimensional modeling, ANSYS system, Python programming language, preventive reinforcement, implants, finite element method, strength analysis, load calculation
  • Viewed: 76 Dowloaded: 2
  • Download Article
  • References

    Література

    1. Ван Г.А. Теорія армованих матеріалів. Київ : Наук. Думка. 2014. 232 с.

    2. Вічнін Г.Г., Беттерман С.К. Прогнозування пошкодження проксимальної частини стегна до і після повної заміни тазостегнового суглоба. Конструювання і технологія машинобудування. 2013. № 2. С. 327–342.

    3. Комп’ютерне моделювання імплантату для армування стегнової кістки / О.В. Савельева,
    І.В. Прокопович, А.В. Павлишко, А.Л. Матвєєв, Т.І. Старушкевич. Праці Одеського політехнічного університету. 2018. Вип. 1(54). С. 51–61. DOI: 10.15276/opu.1.54.2018.07.

    4. Myers E.R., Wilson S.E. Biomechanics of osteoporosis and vertebral fracture. Spine. December 15, 1997. Volume 22. Issue 24. P. 25S–31S. URL: https://journals.lww.com/spinejournal/Fulltext/1997/ 12151/ Biomechanics_of_Osteoporosis_and_Vertebral.5.aspx (Last accessed 15.11.2020)

    5. Рибак О.Ю. Вибрані лекції з біомеханіки: методичний посібник для студентів. Львів : 2017. 131 с.

    6. Кадурін О.К., Вирва О.Є., Леонтьєва Ф.С. Біофізичні властивості компактної кісткової тканини. Х. : Прапор, 2007. 136 с.

    7. Savielieva O., Starushkevych T., Matveev A. Computer-Aided Design of Prophylactic Metal Reinforce-ment of the Proximal Femur. Journal of Engineering Sciences. 2019. Volume 6, Issue 1. P. D16–D20.

    8. Особенности биомеханики проксимального отдела бедра в условиях экспериментального армирования и возникновения низкоэнергетических переломов у лиц старшего возраста / А.Л. Матвеев, В.Э. Дубров, Т.Б. Минасов, А.В. Нехожин и др. Труды первого конгресса стран Шанхайской организации сотрудничества. Травматология, ортопедия и восстановительная медицина тре-тьего тысячелетия. Маньчжурия, 2013. С. 67–69.

    9. Вильдеман В.Э, Зайцев А.В. Про чисельне рішення крайових завдань механіки деформації і руйнування неоднорідних тіл з граничними умовами третього роду. Обчислювальні технології. 2006. Т. 1, № 2. С. 65–68.

    10. Добелис М.А. Деформативные свойства деминерализованной костной ткани человека при растяжении. Механика полимеров. 1978. T. 14, № 1. С. 101–108.

    11. Zienkiewicz O.C., Taylor R.L., Zhu J.Z. The Finite Element Method: Its Basis and Fundamentals: Its Basis and Fundamentals. Elsevier Science. 2005. 756 p.

    12. Papini M., Zdero R., Schemitsch E.H., Zalzal P. The biomechanics of human femurs in axial and tor-sional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Journal of Biomechanical Engineering. 2007. 129(1). P. 12–19.

    13. Abrate S. Modeling of impacts on composite structures. Composite structures. 2001. Vol. 51, No. 2. P. 129–138.

    14. Шуголь Г.Б., Демаков С.Л., Шуголь И.Г. Остеосинтез переломов шейки бедренной кости, основанный на использовании принципа активной фиксации стягиванием. Екатеринбург : УГМУ, 2014. 141 с.

    15. Huiskes R., Janssen J. D., Slooff T. J. A detailed comparison of experimental and theoretical stress analyses of a human femur. Mechanical Properties of Bone, ASME AMD. 2011. Vol. 45. P. 211–234.

    16. Dynamic Characteristics of a Hollow Femur / Huang B.W., et al. Life Science Journal. 2012. 9(1). P. 723–726.

    17. Чигарев А. В., Кравчук А. С., Смалюк А. Ф. ANSYS для инженеров: Справочное пособие. М. : Машиностроение-1, 2004. 512 с.

    18. Нехожин А.В. Двухслойная математическая модель шейки бедра человека для исследования напряжённого состояния при армировании имплантатами различной конструкции. Вестник Сам. гос. техн. ун-та. Серия Физ.-мат. Науки. 2013. № 3(32). С. 129–135.

    References

    1. Van, G.A. (2014). Theory of reinforced materials. Kyiv: Nauk. Dumka.

    2. Vichnin, G.G., & Betterman, S.K. (2013). Prediction of damage to the proximal thigh before and after complete replacement of the hip joint. Design and technology of mechanical engineerin, 2, 327–342.

    3. Savelyeva, O., Prokopovich, I., Pavlyshko, A., Matveev, A., & Starushkevitch, T. (2018). Computer modeling of implant for femur reinforcement. Proceedings of Odessa Polytechnic University, 1(54), 51–61. DOI: 10.15276/opu.1.54.2018.07.

    4. Myers, E.R., & Wilson, S.E. (1997). Biomechanics of osteoporosis and vertebral fracture. Spine. December 15, 22, 24, 25S–31S. Retrieved from: https://journals.lww.com/spinejournal/Fulltext/ 1997/12151/Biomechanics_of_Osteoporosis_and_Vertebral.5.aspx (Last accessed 15.11.2020).

    5. Rybak, O.Y. (2017). Selected lectures on biomechanics: a guide for students. Lviv, 131.

    6. Kadurin, O.K., Vyrva, O.E., & Leontieva, F.S. (2007). Biophysical properties of compact bone tissue. Kharkiv: Prapor.

    7. Savielieva, O., Starushkevych, T., & Matveev, A. (2019). Computer-Aided Design of Prophylactic Metal Reinforcement of the Proximal Femur. Journal of Engineering Sciences, 6, 1, D16–D20.

    8. Matveev, A.L., Dubrov, V.E., Minasov, Т.B., & Nekhozhin, A.V., et al. (2013). Biomechanics features of the proximal femur in conditions of experimental reinforcement and the low-energy fractures appearance of old people. The first congress proceedings of the countries of the Shanghai Cooperation Organization. Traumatology, orthopedics and restorative medicine of the third millennium, Manchuria, 67–69.

    9. Vildeman, V.E., & Zaitsev, A.V. (2006). On the numerical solution of boundary value problems in the mechanics of deformation and fracture of inhomogeneous bodies with boundary conditions of the third kind. Computational Technologies, 1, 2, 65–68.

    10. Dobelis, M.A. (1978). Deformative properties of demineralized human bone tissue during stretching. Mechanics of polymers, 14, 1, 101–108.

    11. Zienkiewicz, O.C., Taylor, R.L., & Zhu, J.Z. (2005). The Finite Element Method: Its Basis and Funda-mentals: Its Basis and Fundamentals. Elsevier Science.

    12. Papini, M., Zdero, R., Schemitsch, E.H., & Zalzal, P. (2007). The biomechanics of human femurs in ax-ial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Journal of Biomechanical Engineering, 129(1), 12–19.

    13. Abrate, S. (2001). Modeling of impacts on composite structures. Composite structures, 51, 2, 129–138.

    14. Shugol, G.B., Demakov, S.L. & Shugol, I.G. (2014). Osteosynthesis of fractures of the femoral neck, based on the use of the principle of active fixation by contraction. Ekaterinburg: UGMU.

    15. Huiskes, R., Janssen, J.D., & Slooff, T.J. (2011). A detailed comparison of experimental and theoretical stress analyses of a human femur. Mechanical Properties of Bone, ASME AMD, 45, 211–234.

    16. Huang, B.W., & et al. (2012). Dynamic Characteristics of a Hollow Femur. Life Science Journal, 9(1), 723–726.

    17. Chigarev, A.V., Kravchuk, A.S., & Smalyuk, A.F. (2004). ANSYS for engineers: A reference guide. Moskow: Mashinostroenie-1.

    18. Nekhozhin, A.V. (2013). Bilayer mathematical model of human femur neck for the stress state research after reinforcement with different designs of implants. Herald of the Samara State Technical University. Series: Physico-mathematical sciences, 3(32), 129–135.

  • Creative Commons License by Author(s)