Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    DIAGNOSIS OF THREADED JOINTS USING ACOUSTIC WAVES

  • Authors

    Kovalevskyy S.
    Kovalevska O.
    Yevdovska H.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2020
    Issue 3(62)
    UDC 667.64:678.026
    DOI 10.15276/opu.3.62.2020.03
    Pages 21-28
  • Abstract

    The paper deals with modern methods of acoustic diagnostics of parts. Using of acoustic waves in the diagnosis of threaded connections makes it possible to inspect assemblies, bolted connections during assembly, as well as to almost instantly to identify defective products, incorrect dimensions and other factors of rejection based on the acoustic frequency response. With a large variety of threaded parts, a significant variation in pitch and diametrical dimensions, the use of acoustic waves represents a new innovative approach to non-destructive testing of units in the assembly of mechanical engineering products. Purpose: Development of an algorithm for diagnostics of threaded connections when assembling units using acoustic waves. To control the details of the node, an acoustic method was used to take the frequency response with the construction of a neural network. To create a neural network, all dimensions of the parts were measured, acoustic diagnostics were carried out to remove frequency characteristics, and the obtained data were entered into the NeuroPro program. To obtain the frequency characteristics of the nodes, a device with two sensors was used. One of them worked for reception, the second sent a constant signal at the frequency of white noise. Each bolt assembly was modified by screwing the bolts to the nut 10º. The measurement was carried out with screwing the bolts in the positions: 0º, 10º, 20º. Using a neural network, data on the degree of tightening of the bolts of the node were obtained and divided into categories. The most significant of them have been identified. The experiment showed that it is enough to have 2 frequency filters in order to determine the dimensions with an accuracy of 0.03 mm. Building a neural network of parts and a prefabricated unit will allow to almost instantly identifying defective products, incorrect dimensions and other factors of rejection based on the acoustic frequency response. This technique can be used to control units, bolted connections during assembly.

  • Keywords threaded connections, acoustic waves, neural network, torque
  • Viewed: 15 Dowloaded: 1
  • Download Article
  • References

    Література

    1. Шуваев В.Г., Шуваев И.В. Применение дополнительных ультразвуковых колебаний при ударно импульсной затяжке резьбовых соединений. Международный симпозиум «Надежность и каче-ство». 2011. С. 230–231.

    2. Гусев А.А., Павлов В.В. Технология сборки в машиностроении. М. : Машиностроение, 2006. 640 с.

    3. Штриков Б.Л., Головкин В.В. Повышение работоспособности резьбовых соединений путем приме-нения ультразвука при обработке и сборке: монография. М. : Машиностроение, 2009. 125 с.

    4. Соловьев В.Л. Повышение точности контроля усилия затяжки при сборке групповых резьбовых соединений. Транспорт. Транспортные и технологические машины. Вестник Сибади. 2013. № 3(31). С. 44–51.

    5. Водолазская Н.В. Совершенствование технологии процесса контролируемой сборки резьбовых соединений. Сборка в машиностроении, приборостроении. 2019. №12. С 564–568

    6. Корнилович С.А. Пути обеспечения плотности стыка резьбовых соединений при производстве, техническом обслуживании и ремонте машин сельскохозяйственного назначения. Омский науч-ный вестник. 2013. №1(117). С. 68–71.

    7. Раевская М.П. Методы и средства контроля резьбовых соединений. Сборник научных трудов 5-й международной молодежной научно-практической конференции. 2018. С. 186–188.

    8. Kovalevskyy S.V., Kovalevska O.S. Acoustic Monitoring with Neural Network Diagnostics. American Journal of Neural Networks and Applications. 2015. Vol. 1. No. 2. P. 39–42.

    9. Приходько О.А., Манойлов В.В. Определение модуля нормальной упругости материала на осно-ве преобразования Фурье акустических колебаний образца. Научное приборостроение. 2009. Т. 19. № 3. С. 93.

    10. Захаренко Ю.Г., Кононова Н.А. Метрологическое обеспечение измерений. Резьбовые соедине-ния. Контроль качества продукции. 2015. С. 41–45.

    11. Марусина М.Я., Федоров А.В. Разработка акустических методов контроля напряженно-деформированного состояния резьбовых соединений. Измерительная техника. 2018. С. 60–64.

    12. Андрюхина Т.Н. Анализ современных методов контроля резьбовых соединений. Материалы XVI Международной научно-практической конференции. Москва : «Институт стратегических иссле-дований». 2014. С. 48–54.

    References

    1. Shuvaev, V.G., & Shuvaev, I.V. (2011). The use of additional ultrasonic vibrations during shock-pulse tightening of threaded connections. International Symposium «Reliability and Quality», 230–231.

    2. Gusev, A.A., & Pavlov, V.V. (2006). Assembly technology in mechanical engineering. Moscow: Me-chanical engineering.

    3. Shtrikov, B.L., & Golovkin, V.V. (2009). Improving the performance of threaded connections by using ultrasound during processing and assembly: monograph. Moscow: Mechanical engineering.

    4. Soloviev, V.L. (2013). Improving the accuracy of control of the tightening force when assembling group threaded connections. Transport. Transport and technological machines. Bulletin of Sibadi, 3(31), 44–51.

    5. Vodolazskaya, N.V. (2019). Improving the technology of the process of controlled assembly of thread-ed connections. Assembly in mechanical engineering, instrument making, 12, 564–568.

    6. Kornilovich, S.A. (2013). Ways to ensure the tightness of the joint of threaded joints in the production, maintenance and repair of agricultural machinery. Omsk Scientific Bulletin, 1 (117), 68–71.

    7. Raevskaya, M.P. (2018). Methods and means of control of threaded connections. Collection of scientific papers of the 5th international youth scientific and practical conference, 186–188.

    8. Kovalevskyy, S.V., & Kovalevska, O.S. (2015). Acoustic Monitoring with Neural Network Diagnos-tics. American Journal of Neural Networks and Applications, 1(2), 39–42.

    9. Prikhodko, O.A., & Manoilov, V.V. (2009). Determination of the modulus of normal elasticity of a ma-terial based on the Fourier transform of acoustic vibrations of the sample. Scientific instrumentation, 19(3), 93–96.

    10. Zakharenko, Yu.G., & Kononova, N.A. (2015). Metrological support of measurements. Threaded con-nections. Product quality control, 41–45.

    11. Marusina, M.Y., & Fedorov, A.V. (2018). Development of acoustic methods for monitoring the stress-strain state of threaded connections. Measurement Techniques, 61, 3, 297–302.

    12. Andryukhina, T.N. (2014). Analysis of modern methods of control of threaded connections. Materials of the XVI International Scientific and Practical Conference. Moscow: Institute for Strategic Studies, 48–54.

  • Creative Commons License by Author(s)