Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    CRUSHING CHARACTER OF SAND-SODIUM-SILICATE MIXTURES STRUCTURED BY STEAM-MICROWAVE TREATMENT

  • Authors

    Solonenko L.
    Repiakh S.
    Kimstach T.
    Uzlov K.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2020
    Issue 3(62)
    UDC 621.742.486
    DOI DOI: 10.15276/opu.3.62.2020.01
    Pages 5-13
  • Abstract

    At the present, from among the known methods of sand-sodium-silicate mixtures structuring, the least studied, but the most promising, is the method of steam-microwave solidification. Among unexplored elements of steam-microwave solidification method is nature of mixtures destruction. This is especially important for determining the ways to increase the sand-sodium-silicate casting molds and cores strength before pouring and lowering their strength by the time when casting should be knocked out the mold and the core from cast product. Knowledge about mixture destruction nature is also necessary for appropriate technical solutions elaboration concerning sand regeneration. In this regard, the purpose of the present work has to be nature of sand-sodium-silicate mixtures structured by steam-microwave solidification method destruction establishing. Quartz sand cladded with sodium-silicate solute has been used in the present investigation. Mixture (cladded sand) structuring has been carried out by microwave radiation at nominal magnetron power of 700 W and radiation frequency of 2.45 GHz in area of standing waves. To cladded sand structuring, 1 g water portion has been added, which has been placed in bottom of container in which mixture has been microwave treated. To make decision on mixture destruction nature, images of structured mixtures destruction places within one grain (sand grain), which are typical for adhesive and cohesive character of destruction, obtained with scanning electron microscope have been used. It has been found that with sodium-silicate solute for quartz sand cladding mass content from 0.5 to 6 % (by weight) increasing, as well as with mixture processing by the method of steam-microwave solidification duration increasing, mixture compression ultimate strength increases according to dependence closed to exponential. Character of structured mixture destruction, in this case, is not depend on sodium-silicate solute used for quartz sand cladding content, but depends on steam-microwave solidification duration. With its time increasing it changes from adhesive to mix or from adhesive to mixed and cohesive.

  • Keywords sand-sodium-silicate mixture, sodium silicate solute, steam-microwave solidification, adhesion, cohesion, strength
  • Viewed: 147 Dowloaded: 8
  • Download Article
  • References

    Література

     

    1.Гурлев В.Г. Анализ физико-химических процессов формирования структуры жидкостекольных формовочных и стержневых смесей при производстве отливок, получаемых в разовых формах. Вестник ЮУрГУ. 2012. № 15. С. 11–19.

     

    2.Жуковский С.С. Прочность литейной формы. М. : Машиностроение, 1989. 288 с.

     

    3.Stachowicz M. Effect of overheating degree on activations efficiency of water-glass containing sand mix hardened by traditional drying. Archives of foundry engineering. 2015. Vol. 15, Issue 2. P. 77–82.

     

    4.Carbonization and crushability of structured sand-sodium-silicate mixtures / L.I. Solonenko, R.V. Usenko, K.I. Uzlov, A.V. Dziubina, S.I. Repiakh. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020. Vol. 5. P. 40–46.

     

    5.Stachowicz M., Granat K. Research on reclamation and activation of moulding sand containing water-glass hardened with microwaves. Archives of foundry engineering. 2014. Vol. 14, Issue 2. P. 105–110.

     

    6.Heating rate of granular inorganic materials by microwave radiation / L.I. Solonenko, O.Р. Bilyi, S.I. Repiakh, T.V. Kimstach, K.I. Uzlov. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020. № 2. Р. 37–41.

     

    7.Клюкова Т.Д., Власова К.А., Леонов А.А., Яшина С.А. Изучение механизма образования проч-ности в самотвердеющих смесях с фенольным связующим (обзор). Труды ВИАМ. 2018. № 3. С. 18–27.

     

    8.Жуковский С.С. Холоднотвердеющие связующие и смеси для литейных стержней и форм: спра-вочник. М. : Машиностроение, 2010. 256 с.

     

    9.Великанов Г.Ф., Примак Н.Н., Бречко А.А. Прочность формовочной смеси. Литейное производ-ство. 1986. № 3. С. 10–12.

     

    10.Лясс А.М. Быстротвердеющие формовочные смеси. М. : Машиностроение, 1965. 329 с.

     

    11.Зыков А.П., Минаев Г.И. Механизм формирования прочностных свойств песчано-смоляных об-разцов из горячеплакированных смесей. Литейное производство. 1984. № 1. С. 15–16.

     

    12.Великанов Г.Ф., Бречко А.А. Формовочные и стержневые смеси с заданными свойствами. Л. : Машиностроение, 1982. 214 с.

     

    13.Солоненко Л.І., Білий О.П., Узлов К.І. Функціональні залежності між властивостями зразків з структурованих формувальних і стрижневих сумішей. Теорія і практика металургії. 2018. № 6. С. 93–100.

     

    14.Stachowicz M., Granat K., Palyga L. Influence of sand preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of metallurgy and materials. 2017. Vol. 62, Issue 1. P. 379–383.

     

    15.Stachowicz M. Preliminary testing of microwave-cured joints made of adhesives based on hudrated so-dium silicate and quartz sand. Transactions of the foundry research institute. 2018. Vol. 58, Issue 4. P. 295–308.

     

    References

     

    1.Gurlev, V.G. (2012). Analysis of physical and chemical processes of structure formation of liquid glass molding and core mixtures in dispensable mold casting. Bulletin of the South Ural State University, 15, 11–19.

     

    2.Zhukovsky, S.S. (1989). Mold strength. Moscow: Mashinostroenie.

     

    3.Stachowicz, M. (2015). Effect of overheating degree on activations efficiency of water-glass containing sand mix hardened by traditional drying. Archives of foundry engineering, 15, 2, 77–82.

     

    4.Solonenko, L.I., Usenko, R.V., Uzlov, K.I., Dziubina, A.V., & Repiakh, S.I. (2020). Carbonization and crushability of structured sand-sodium-silicate mixtures. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 40–46.

     

    5.Stachowicz, M., & Granat, K. (2014). Research on reclamation and activation of moulding sand con-taining water-glass hardened with microwaves. Archives of foundry engineering, 14, 2, 105–110.

     

    6.Solonenko, L.I., Bilyi, O.Р., Repiakh, S.I., Kimstach, T.V., & Uzlov, K.I. (2020). Heating rate of granu-lar inorganic materials by microwave radiation. Naukovyi Visnyk Natsionalnoho Hirnychoho Univer-sytetu, 2, 37–41.

     

    7.Klyukova, T.D., Vlasova, K.A., Leonov, A.A., & Yashina, S.A. (2018). Study of the mechanism of strength formation in self-hardening mixtures with a phenolic binder (review). VIAM Proceedin, 3, 18–27.

     

    8.Zhukovsky, S.S. (2010). Cold-hardening binders and mixtures for casting cores and molds: a reference book. Moscow: Mashinostroenie.

     

    9.Giants, G.F., Primak, N.N., & Brechko, A.A. (1986). The strength of the sand. Foundry, 3, 10–12.

     

    10.Lyass, A.M. (1965). Fast-setting molding sands. Moscow: Mashinostroenie.

     

    11.Zykov, A.P., & Minaev, G.I. (1984). Mechanism of Formation of Strength Properties of Sand-Resin Samples from Hot-Clad Mixes. Foundry, 1, 15–16.

     

    12.Giants, G.F., & Brechko, A.A. (1982). Molding and core mixtures with desired properties. Leningrad: Mashinostroenie.

     

    13.Solonenko, L.I., Biliy, O.P., & Uzlov, K.I. (2018). Functional dependencies between sample properties from structured molding and core mixtures. Theory and practice, 6, 93–100.

     

    14.Stachowicz, M., Granat, K., & Palyga, L. (2017). Influence of sand preparation on properties of chro-mite moulding sands with sodium silicate hardened with selected methods. Archives of metallurgy and materials, 62, 1, 379–383.

     

    15.Stachowicz, M. (2018). Preliminary testing of microwave-cured joints made of adhesives based on hu-drated sodium silicate and quartz sand. Transactions of the foundry research institute, 58, 4, 295–308.

     

     

  • Creative Commons License by Author(s)