Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.



  • Title


  • Authors

    Sinko I. S.
    Sydorenko Igor I.
    Pavlishko А. V.
    Ishaeva M.

  • Subject


  • Year 2019
    Issue 2(58)
    UDC 004.422.83
    DOI 10.15276/opu.2.58.2019.09
    Pages 85-90
  • Abstract

    The development of industry has revealed the need for a wide variety of production facilities with special requirements for their acoustic characteristics. As a result, the interior decoration of any production room requires the use of acoustic finishing materials, which ultimately determine the acoustics of the entire production complex. However, at the stage of designing industrial premises, especially when using specialized software, a number of difficulties arise with the justified choice of acoustic finishing materials for this. Taking into account the fact that currently existing programs allow only approximately calculate the acoustics of rooms and not one of them gives an unequivocal answer to the question, the obtained model of the room meets the requirements of the legislation and the customer, therefore there is a need to develop new software that solves this problem. When developing new software of this type, the problem of storing and efficiently processing reference information organized in the form of a database always arises. The paper proposes modeling the desired database in the form of a mathematical apparatus, which is a graph. The solution of this problem was carried out on modeling a database of acoustic materials with bipartite graphs. Based on this, information processing of such a database, in order to find the necessary information in the least time, was carried out using one of the algorithms for comparing bipartite graphs. The Hopcroft-Karp algorithm is used as an algorithm. Based on an example, it was found that the adopted algorithm does not always give the right solution, since it eliminates edges with common end points in the graph model of the database model and creates random edges. Based on the results of the study, a database of acoustic materials in the AUTOCAD system in the AUTOLISP language is proposed and implemented, which corresponds to a graphical model in the form of a tree of oriented graphs, the processing of which allows you to use DFS and BFS scanning algorithms and get the right solution with the least amount of time.

  • Keywords acoustic materials, bipartite graph, Hopcroft-Carp algorithm, oriented graph tree, DFS and BFS graph traversal algorithms
  • Viewed: 633 Dowloaded: 6
  • Download Article
  • References



    1. Малыхина М.П. Базы данных: Основы проектирование использование. БХВ-Петербург, 2007. 230 с.

    2. Ковригин С.Д. Архитектурно-строительная акустика. Москва: Высшая школа, 1980. 124 с.

    3. Макриненко Л.И. Акустика помещений общественных зданий. Москва: Стройиздат, 1986. 280 с.

    4. Рейхардт В. Акустика общественных зданий. Москва: Стройиздат, 1984. 130 с.

    5. Синько И.С., Молчан Е.Г. Акустические свойства промышленных помещений и зданий много-целевого назначения. Проблеми техніки. Наук.-вироб. журн. 2014. №2. С. 90–96.

    6. Лебедев Б.В., Синько И.С. Автоматизированный расчёт освещения помещений. Проблеми тех-ніки. Наук.-вироб. журн. 2011. №2. С. 64–69.

    7. Тонконогий В.М., Синько И.С., Корнещук И.Т. Автоматизированное проектирование помеще-ний со специальными акустическими свойствами. Високі технології в машинобудуванні. 2015. № 1. С. 204–209.

    8. Татт У. Теория графов. Москва: Мир, 1988. 424 с.

    9. John Adrian Bondy, U. S. R. Murty. Graph Theory with Applications. North-Holland, 2016. 5 p. ISBN 0-444-19451-7.

    10. Reinhard Diestel. Graph Theory. Springer, 2005. 17 p. ISBN 3-540-26182-6.

    11. Харари Ф. Теория графов. Москва: Мир, 1973. 450 с.

    12. Уилсон Р. Введение в теорию графов. Москва: Мир, 1977. 208 с.




    1. Malykhina, M.P. (2007). Databases: Design Basics Using. BHV-Petersburg.

    2. Kovrigin, S.D. (1980). Architectural and building acoustics. Moscow: Higher School.

    3. Makrinenko, L.I. (1986). Acoustics of premises of public buildings. Moscow: Stroyizdat.

    4. Reichardt, V. (1984). Acoustics of public buildings. Moscow: Stroyizdat.

    5. Sinko, I.S., & Molchan, E.G. (2014). Acoustic properties of industrial premises and multi-purpose buildings. Problems of technology. Science-virob. Journal, 2, 90–96.

    6. Lebedev, B.V., & Sinko, I.S. (2011). Automated calculation of room lighting. Problems of technology. Science-Virob. Journal, 2, 64–69.

    7. Tonkonogy, V.M., Sinko, I.S., & Korneschuk, I.T. (2015). Automated design of premises with special acoustic properties. High technology in mechanical engineering, 1, 204–209.

    8. Tatt, W. (1988). Theory of graphs. Moscow: Mir.

    9. John Adrian Bondy, & U. S. R. Murty. (2016). Graph Theory with Applications. North-Holland. ISBN 0-444-19451-7.

    10. Reinhard Diestel. (2005). Graph Theory. Springer. ISBN 3-540-26182-6.

    11. Harari, F. (1973). Graph Theory. Moscow: Mir.

    12. Wilson, R. (1977). Introduction to graph theory. Moscow: Mir.

  • Creative Commons License by Author(s)