Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Bodyanskiy Yevgen V.

Biography

Yevgen V. Bodyanskiy, Professor of Artificial Intelligence Department, scientific supervisor of the Automated Control Systems fundamental researches laboratory behind the Kharkiv National University of Radioelectronics, Dr.Eng., Professor, IEEE Senior Member.

In 1971 Ye. V. Bodyanskiy graduated with honours from the Kharkiv National University of Radioelectronics, speciality «Automation and telemechanics» and, beginning from 1974  is employed on the payroll of the mentioned  KhNUR.

Ph.D. title obtained in 1979 in the «Engineering cybernetics and information theory» field, the Senior Researcher fellowship dated of 1984 in the same speciality, got further progress in 1990 with Dr.Eng. rank, and the Professor title (1994) in the special field “Control at Technical Systems”.

The scientific interests area relates to hybrid  evolutionary systems of computational intelligence. Prof. Ye. V. Bodyanskiy is the author of more that 450 scientific publications, that including 12 monographs, (3 monographs are published abroad), holds 40 Inventor’s Certificates. Under Prof. Bodyanskiy’s scientific supervision have been trained 7 Doctors of Sciences and 20 Ph.D.

 

Bibliography

1. Bodyanskiy Ye., Teslenko N. Autoassociative memory evolving system based on fuzzy basis functions // Scientific J. of Riga Technical University. Computer Science, Information Technology and Management Sci. – 2010. – №44. – P.9–14.
2. Bodyanskiy Ye., Dolotov A. Hybrid systems of computational intelligence evolved from self-learning spiking neural network / Eds. G. Setlak, K. Markov “Methods and Instruments of Artificial Intelligence” – Rzeszow-Sofia: ITHEA, 2010. – P. 17-24.
3. Bodyanskiy Ye., Grimm P., Mashtalir S., Vinarski V. Fast training of neural networks for image compression // In “Lecture Notes in Artificial Intelligence”. – V. 6171. – Berlin-Heidelberg: Springer-Verlag, 2010. – P. 165-173.
4. Bodyanskiy Ye., Dolotov A. Analog-digital self-learning fuzzy spiking neural network in image processing problems // In “Image Processing”. – Ed. by Chen Y.-Sh. – Vukovar: In-Teh, 2009. - P. 357-380. (Book Chapter).
5. Bodyanskiy Ye., Viktorov Ye., Pliss I. The cascade growing neural network using quadratic neurons and its learning algorithms for on-line information processing / Eds. by G. Setlak, R. Markov – Intelligent Information and Engineering Systems. Int. Book Series “Information Science & Computing”, Number 13. - Institute of Information Theories and Applications FOI ITHEA, Rzeszow, Poland – Sofia, Bulgaria, 2009. – P. 27-34.
6. Bodyanskiy Ye., Dolotov A., Pliss I. Adaptive Gustafson-Kessel fuzzy clustering algorithm based on self-learning spiking neural network / Eds. by G. Setlak, K. Markov – Intelligent Information and Engineering Systems. Int. Book Series “Information Science & Computing”, Number 13. - Institute of Information Theories and Applications FOI ITHEA, Rzeszow, Poland – Sofia, Bulgaria, 2009. – P. 19-26.
7. Bodyanskiy Ye., Popov S., Titov M. Function decomposition network // In “Lecture Notes in Computer Science”. – V. 5768. – Part I. – Berlin Heidelberg: Springer-Verlag, 2009. – P. 718-727.
8. Bodyanskiy Ye., Gorshkov Ye., Kokshenev I., Kolodyazhniy V. Evolving fuzzy classification of non-stationary time series / In “Evolving Intelligent Systems: Methodology and Applications” – Eds. by P. Angelov, D. Filev, N. Kasabov. – New York: John Wiley, 2010. – P.446–464 (Book Chapter)
9. Bodyanskiy Ye., Vynokurova O., Yegorova E. Radial-basis-fuzzy wavelet-neural network with adaptive activation-membership function // Int. J. on Artificial Intelligence and Machine Learning. – 2008. – 8. – Is. II. – P.9–15.
10. Bodyanskiy Ye.,Pavlov O.O., Vynokurova O. Adaptive compartmental wavelon with robust learning algorithm // Int. J. Information Technologies & Knowledge. – 2009. - Vol.3. - P. 24-36.
11. Bodyanskiy Ye., Viktorov Ye. The cascade neo-fuzzy architecture using cubic-spline activation function // Int. J. Information Theories & Application. – 2009. – 16. - 3. – P. 245-259.