Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Modelling and optimization of seawater desalination process using mechanical vapour compression

  • Authors

    Kravchenko Volodymyr P.
    Surkov Sergiy V.
    Ghanem Hussam

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2016
    Issue 2(49)
    UDC 628.165.048+621.577.4
    DOI 10.15276/opu.2.49.2016.08
    Pages 47-55
  • Abstract

    In the conditions of global climate changes shortage of fresh water becomes an urgent problem for an increasing number of the countries. One of the most perspective technologies of a desalting of sea water is the mechanical vapour compression (MVC) providing low energy consumption due to the principle of a heat pump. Aim: The aim of this research is to identify the reserves of efficiency increasing of the desalination systems based on mechanical vapour compression by optimization of the scheme and parameters of installations with MVC. Materials and Methods: The new type of desalination installation is offered which main element is the heat exchanger of the latent heat. Sea water after preliminary heating in heat exchangers comes to the evaporator-condenser where receives the main amount of heat from the condensed steam. A part of sea water evaporates, and the strong solution of salt (brine) goes out of the evaporator, and after cooling is dumped back in the sea. The formed steam is compressed by the compressor and comes to the condenser. An essential singularity of this scheme is that condensation happens at higher temperature, than evaporation. Thanks to this the heat, which is comes out at devaporation, is used for evaporation of sea water. Thereby, in this class of desalination installations the principle of a heat pump is implemented. Results: For achievement of a goal the following tasks were solved: the mathematical model of installations with MVC is modified and supplemented; the scheme of heat exchangers switching is modified; influence of design data of desalination installation on the cost of an inventory and the electric power is investigated. The detailed analysis of the main schemes of installation and mathematical model allowed defining ways of decrease in energy consumption and the possible merit value. Influence of two key parameters – a specific power of the compressor and a specific surface area of the evaporator condenser – on a value of given expenses of desalination installation is analyzed. The optimum ratio of these parameters is defined.

  • Keywords desalting of sea water, mechanical vapour compression, numerical modeling
  • Viewed: 1408 Dowloaded: 15
  • Download Article
  • References

    Література
    1.    Escobar, I.C. Sustainable water for the future: Water recycling versus desalination / I.C. Escobar, A.I. Schäfer. — Amsterdam; Boston: Elsevier Science, 2010. — 416 p.
    2.    Копылов, А.С. Водоподготовка в энергетике / А.С. Копылов, В.М. Лавыгин, В.Ф. Очков. — 2-е изд., стер. — М.: Издат. дом МЭИ, 2006. — 309 с.
    3.    El-Dessouky, H.T. Fundamentals of salt water desalination / H.T. El-Dessouky, H.M. Ettouney. — Amsterdam: Elsevier Science, 2002. — 670 p.
    4.    Al-Juwayhel, F. Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps / F. Al-Juwayhel, H. El-Dessouky, H. Ettouney // Desalination. — 1997. — Vol. 114, Issue 3. — PP. 253–275.
    5.    Lara, J.R. Advanced mechanical vapor-compression desalination system / J.R. Lara, Omorinsola Osunsan, M.T. Holtzapple // Desalination, Trends and Technologies / ed. by M. Schorr. — Rijeka: InTech, 2011. — PP. 129–148.
    6.    Lara, J.R. An investigation of high operating temperatures in mechanical vapor-compression desalination / J.R. Lara, G. Noyes, M.T. Holtzapple // Desalination. — 2008. — Vol. 227, Issues 1–3. — PP. 217–232.
    7.    Черкасский, В.М. Насосы, вентиляторы, компрессоры / В.М. Черкасский. — М.: Энергоатомиздат, 1984. — 416 с.
    8.    Беренс, В. Руководство по подготовке промышленных технико-экономических исследований: монография / В. Беренс, П.М. Хавранек; пер. с англ. А.О. Гридин и др.; науч.ред. Р.П. Вчерашний и др. - новое перераб. и доп. изд. — М.: Интерэксперт, 1995. — 343 с.
    9.    Preparation of a Feasibility Study for New Nuclear Power Projects / International Atomic Energy Agency. — Vienna: IAEA, 2014. — 125 p.
    10.    Типовые цены на Теплообменники пластинчатые [Електронний ресурс] / ТеплоПрофи: Комплексные поставки инженерного оборудования по России и СНГ. — Режим доступу: http://www.teploprofi.com/ceni/ (Дата звернення: 25.05.2016).
    11.    Оборудование [Електронний ресурс] / ERSTEVAK Ltd. — Режим доступу: http://www.erstvak.com/equipment/ (Дата звернення: 24.05.2016).

    References
    1.    Escobar, I.C., & Schäfer, A.I. (2010). Sustainable Water for the Future: Water Recycling Versus Desalination. Amsterdam; Boston: Elsevier Science.
    2.    Kopylov, A.S., Lavygin, V.M., & Ochkov, V.F. (2006). Water Treatment in Power Engineering (2nd Ed.). Moscow: MEI.
    3.    El-Dessouky, H.T., & Ettouney, H.M. (2002). Fundamentals of Salt Water Desalination. Amsterdam: Elsevier Science.
    4.    Al-Juwayhel, F., El-Dessouky, H., & Ettouney, H. (1997). Analysis of single-effect evaporator desalination systems combined with vapor compression heat pumps. Desalination, 114(3), 253-275. DOI:10.1016/S0011-9164(98)00017-4
    5.    Lara, J.R., Omorinsola Osunsan, Holtzapple, M.T. (2011). Advanced mechanical vapor-compression desalination system. In M. Schorr (Ed.), Desalination, Trends and Technologies (pp. 129–148). Rijeka: InTech. DOI:10.5772/14711
    6.    Lara, J.R., Noyes, G., & Holtzapple, M.T. (2008). An investigation of high operating temperatures in mechanical vapor-compression desalination. Desalination, 227(1–3), 217–232. DOI:10.1016/j.desal.2007.06.027
    7.    Cherkassky, V.M. (1985). Pumps, Fans, Compressors. Moscow: Mir.
    8.    Behrens, W., & Hawranek, P.M. (1991). Manual for the Preparation of Industrial Feasibility Studies. Vienna: UNIDO.
    9.    International Atomic Energy Agency. (2014). Preparation of a Feasibility Study for New Nuclear Power Projects. Vienna: IAEA.
    10.    TeploProfi. (n.d.). Prices for Lamella Heat-Exchangers. Retrieved from http://www.teploprofi.com/ceni/
    11.    ERSTEVAK Ltd. (n.d.). Equipment. Retrieved from http://www.erstvak.com/equipment/

  • Creative Commons License by Author(s)