Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Research of the sediment formation intensity at the run-around cooling systems equipment with water cooling towers

  • Authors

    Ahrameev Vitaliy G.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2016
    Issue 2(49)
    UDC 621.182.11.001.57
    DOI 10.15276/opu.2.49.2016.09
    Pages 56-61
  • Abstract

    For circulating cooling systems the solid mineral sediments formed as a result of crystallization of sparingly soluble inorganic salts in the transition of circulating water in the supersaturated state are the most dangerous. Aim: The aim is to study the intensity of sediments of hardly soluble salts crystals on the surfaces of the heating of evaporative cooling equipment and condensers from supersaturated circulating water in the circulating cooling systems of power plants with water cooling towers. Materials and Methods: The methodology of the research was to study the mass and size of the hardly soluble crystals in circulation water and sediments on heat exchange surfaces of the condenser and the evaporator surface of the water cooling tower. Source water for the experiment was selected from river Styr. Experimental studies were carried out at the installation of a scale model of circulation cooling system. To study the nature of the interaction of the solid phase particles with each other in the starting water and the circulating used the method of dispersion analysis of coarse phase particles in the optically scanned water layer. Results: The study the intensity of sediments sparingly of soluble salt crystal on the surfaces of the heating of evaporative cooling equipment and condensers from supersaturated circulating water in the circulating cooling systems of power plants with water cooling towers were held. It has been determined that as the circulation water is cooling, with its runoff along the cooling surface and aeration by counter-steam mass flow there are salinity increase and increase the weight of precipitated carbonate salts crystals, which ultimately leads to the formation of loose sediments in the unheated watering surfaces of water cooling towers. Allocation of crystallization centers of sparingly soluble carbonate salt when it is heated in the heat exchange condenser tubes is due to the thermal dissociation of good soluble bicarbonate salts into sparingly soluble carbonate salts and then sediment at the heated tubes surface.

  • Keywords circulating water, circulating cooling system, sediments
  • Viewed: 570 Dowloaded: 8
  • Download Article
  • References

    Література
    1.    Исследование дисперсного состава и характеристик твердофазных частиц в циркуляционной воде оборотных систем охлаждения / А.Б. Гуляенко, Е.В. Кишневский, О.М. Малиновский, В.Ф. Очков // Пр. Одес. політехн. ун-ту. — 2010. — Вип. 1(33)–2(34). — С. 70–75.
    2.    Кишневский, В.А. Предотвращение коррозии паровых калориферов и их конденсатопроводов / В.А. Кишневский, А.П. Боровский, Б.Н. Шукайло // Пр. Одес. політехн. ун-ту. — 2005. — Вип. 2(24). — С. 90–95.
    3.    Неведров, А.В. Сравнительный анализ физических методов обработки воды для уменьшения накипеобразования / А.В. Неведров, Г.В. Ушаков // Теплоэнергетика. — 2003. — № 11. — С. 62–64.
    4.    Calcium carbonate deposit formation under isothermal conditions / N. Andritsos, M. Kontopoulou, A.J. Karabelas, P.G. Koutsoukos // The Canadian Journal of Chemical Engineering. — 1996. — Vol. 74, Issue 6. — PP. 911–919.
    5.    Kazi, S.N. Fouling and fouling mitigation on heated metal surfaces / S.N. Kazi, G.G. Duffy, X.D. Chen // Desalination. — 2012. — Vol. 288. — PP. 126–134.
    6.    Andritsos, N. Morphology and structure of CaCO3 scale layers formed under isothermal flow conditions / N. Andritsos, A.J. Karabelas, P.G. Koutsoukos // Langmuir. — 1997. — Vol. 13, Issue 10. — PP. 2873–2879.
    7.    Briançon, S. Modelling of crystalline layer growth using kinetic data obtained from suspension crystallization / S. Briançon, D. Colson, J.P. Klein // Chemical Engineering Journal. — 1998. — Vol. 70, Issue 1. — PP. 55–64.
    8.    Kostoglou, M. Comprehensive modeling of precipitation and fouling in turbulent pipe flow / M. Kostoglou, A.J. Karabelas // Industrial & Engineering Chemistry Research. — 1998. — Vol. 37, Issue 4. — PP. 1536–1550.
    9.    Karabelas, A.J. Scale formation in tubular heat exchangers — research priorities / A.J. Karabelas // International Journal of Thermal Sciences. — 2002. — Vol. 41, Issue 7. — PP. 682–692.
    10.    Кишневский, В.А. Исследование процессов карбонатных отложений на теплообменных поверхностях конденсаторов / В.А. Кишневский, В.В. Чиченин // Восточно-Европейский журнал передовых технологий. — 2014. — № 3/8 (69). — С. 52–58.
    11.    Garrels, R.M. Solutions, minerals, and equilibria / R.M. Garrels, C.L. Christ. — Boston: Jones and Bartlett, 1990. — 450 p.
    12.    Исследование скорости коррозии и накопления отложений при упаривании циркуляционной воды в лабораторных условиях / В.В. Чиченин, В.А. Кишневский, А.С. Грицаенко и др. // Восточно-Европейский журнал передовых технологий. — 2015. — № 5/8 (77). — С. 14–20. DOI:10.15587/1729-4061.2015.51205
    13.    Кишневский, В.А. Методика расчета водно-химического режима комплексной оборотной системы охлаждения с рециркуляцией / В.А. Кишневский, В.В. Чиченин, И.Д. Шуляк // Восточно-Европейский журнал передовых технологий. — 2013. — № 6/8 (66). — С. 10–14.

    References
    1.    Guliayenko, A.B., Kishnevsky, Е.V., Maleenovsky, О.M., & Ochkov, V.F. (2010). Research of dispersion composition and characteristics of solid-phase particles in circulation water of the circulating systems of cooling. Odes’kyi Politechnichnyi Universytet. Pratsi, 1–2, 70–75.
    2.    Kishnevskу, V.A., Borovsky, О.Р., & Shukaylo, B.N. (2005). Prevention of corrosion in steam air heaters and their condensate pipes. Odes’kyi Politechnichnyi Universytet. Pratsi, 2, 90–95.
    3.    Nevedrov, A.V., & Ushakov, G.V. (2003). A comparative analysis of physical methods for water treatment to reduce scale formation. Thermal Engineering, 50(11), 944–947.
    4.    Andritsos, N., Kontopoulou, M., Karabelas, A.J., & Koutsoukos, P.G. (1996). Calcium carbonate deposit formation under isothermal conditions. The Canadian Journal of Chemical Engineering, 74(6), 911–919. DOI:10.1002/cjce.5450740614
    5.    Kazi, S.N., Duffy, G.G., & Chen, X.D. (2012). Fouling and fouling mitigation on heated metal surfaces. Desalination, 288, 126–134. DOI:10.1016/j.desal.2011.12.022
    6.    Andritsos, N., Karabelas, A.J., & Koutsoukos, P.G. (1997). Morphology and structure of CaCO3 scale layers formed under isothermal flow conditions. Langmuir, 13(10), 2873–2879. DOI:10.1021/la960960s
    7.    Briançon, S., Colson, D., & Klein, J.P. (1998). Modelling of crystalline layer growth using kinetic data obtained from suspension crystallization. Chemical Engineering Journal, 70(1), 55–64. DOI:10.1016/S1385-8947(98)00080-1
    8.    Kostoglou, M., & Karabelas, A.J. (1998). Comprehensive modeling of precipitation and fouling in turbulent pipe flow. Industrial & Engineering Chemistry Research, 37(4), 1536–1550. DOI: 10.1021/ie970559g
    9.    Karabelas, A.J. (2002). Scale formation in tubular heat exchangers — research priorities. International Journal of Thermal Sciences, 41(7), 682–692. DOI:10.1016/S1290-0729(02)01363-7
    10.    Kishnevsky, V., & Chichenin, V. (2014). Study of carbonate deposits on heat exchange surfaces of condensers. Eastern-European Journal of Enterprise Technologies, 3(8), 52–58.
    11.    Garrels, R.M., & Christ, C.L. (1990). Solutions, Minerals, and Equilibria. Boston: Jones and Bartlett.
    12.    Chichenin, V., Kishnevskiy, V., Hrytsaienko, A., Ahrameev, V., & Shuliak, I. (2015). Study of corrosion rate and accumulation of deposits under circulating water concentration in bench experiments. Eastern-European Journal of Enterprise Technologies, 5(8), 14–20. DOI:10.15587/1729-4061.2015.51205
    13.    Kishnevskiy, V., Chichenin, V., & Shulyak, I. (2013). Method of calculation of water chemistry of the integrated circulation cooling system with recirculation. Eastern-European Journal of Enterprise Technologies, 6(8), 10–14.

  • Creative Commons License by Author(s)