Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Numerical researches of DGRP-type experimental frames using the finite elements method

  • Authors

    Mikhaylovskiy Denis V.
    Matyuschenko Dmytro M.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2016
    Issue 2(49)
    UDC [624.072.33:624.011.1]:512.547.2
    DOI 10.15276/opu.2.49.2016.04
    Pages 14-23
  • Abstract

    One of the most common types of structures made of glulam beams is curved frames. A lot of industrial plants and public buildings are built using curved frames. The using of such frames in buildings with an aggressive environment showed their great reliability. However, with all the advantages of curved frames with glulam beams their using is constrained by imperfect methods of stress analysis based on the principles of calculation of structures with solid wood. The need for careful study and improvement of methods of calculation of Curved frames determines the relevance of researched topic. Aim: The aim of this research is to study the numerous researches of pilot frame for further improving of methods of stress analysis in the curtain nodes of curved frames. Materials and Methods: In order to achieve this goal the theoretical displacements and component stress state were determined using experimental elastic characteristics of the frames material. Glulam beams compared to a solid closer to trans tropic design scheme of symmetry, according to which the mechanical and elastic properties of building materials in planes perpendicular direction along the wood fibers are equivalent.For reliable determination of the parameters of the stress-strain state in the elements of any shape, getting of quality pictures of stress distribution along the length of the frame and establishing patterns of changes in stress in the composition of the assembly, the software system LIRA-CAD has been used , where a model of orthogonal anisotropy (orthotropy) in the plate finite elements has been realized. Results: Analyzing the results, we can conclude that the overall coincidence between theoretical and experimental data is satisfactory. Arguably, the strained state of frames obtained by theoretical calculation with taking into account the real physical and mechanical characteristics of the experimental designs material is significant. Given that in the compressed-bending elements the additional bending moment on the normal force is a function of movement, we can assume that this calculation method of finite elements in LIRA-CAD allows satisfactorily determine the tension in view of the deformed circuit frames and anisotropy of physical and mechanical properties of glulam beams.

  • Keywords curved frame, glulam beams, cornice node, stress-strain state, finite elements method
  • Viewed: 927 Dowloaded: 1
  • Download Article
  • References

    Література
    1.    Богданова, Е.Н. Анализ причин обрушения зданий и сооружений методы усиления конструкций: обзор.-аналит. докл. / Е.Н. Богданова. — М.: ВНИИНТПИ, 2004. — 96 с.
    2.    Matiuschenko, D.M. Experimental and numerical investigations of glulam frames of glued wood / D.M. Matiuschenko // Чернігівський науковий часопис. Серія 2, Техніка і природа. — 2012. — № 1(3). — С. 92–99.
    3.    Кліменко, В.З. Вітчизняний досвід впровадження в капітальному будівництві конструкцій з клеєної деревини. Здобутки і проблеми / В.З. Кліменко // Будівництво України. — 2009. — № 5. — С. 17–21.
    4.    Михайловський, Д.М. Напружений стан гнутоклеєних рам з врахуванням анізотропії фізико-механічних властивостей клеєної деревини / Д.В. Михайловський, Д.М. Матющенко // Строительство, материаловедение, машиностроение. — 2015. — Вып. 81. — С. 124–129.
    5.    ДБН В.2.6-161:2010. Конструкції будинків і споруд. Дерев’яні конструкції. Основні положення. — Чинний від 2011-09-01. — К.: Мінрегіонбуд України, 2011. — 102 с.
    6.    EN 1995-1-1:2004. Eurocode 5: Design of timber structures — Part 1-1: General — Common rules and rules for buildings. — Approved: April 16, 2004. — Brussels: European Committee for Standardization, 2004. — 121 p.
    7.    Найчук, А.Я. Некоторые особенности расчета клееных деревянные конструкций / А.Я. Найчук, Е.Н. Серов, И.Ф. Захаркевич // Сб. науч. тр. Междунар. симпозиума «Современные металлические и деревянные конструкции (нормирование, проектирование и строительство)», 15–18 июня 2009 г., Брест, Беларусь. — Брест: ОАО «Брестская типография», 2009. — С. 205–211.
    8.    Ormarsson, S. Moisture-induced stresses in glulam frames / S. Ormarsson, Ó.V. Gíslason // European Journal of Wood and Wood Products. — 2016. — Vol. 74, Issue 3. — PP. 307–318.
    9.    Study of stress distribution and stress concentration factor in notched wood pieces with cohesive surfaces / J.R. Aira, T. Descamps, L. Van Parys, L. Léoskool // European Journal of Wood and Wood Products. — 2015. — Vol. 73, Issue 3. — PP. 325–334.
    10.    Проектирование конструкций из дерева и пластмасс / С.В. Поветкин, А.А. Сморчков, В.А. Кабанов, С.Ю. Табунов. — Курск: КПИ, 1993. — 93 c.
    11.    Smardzewski, J. Furniture design / J. Smardzewski. — Cham, Switzerland: Springer, 2015. — 649 p.
    12.    Ашкенази, Е.К. Анизотропия древесины и древесных материалов / Е.К. Ашкенази. — М.: Лесная промышленность, 1978. — 224 с.
    13.    Wood composites / ed. by M.P. Ansell. — Cambridge: Woodhead Publishing, 2015. — 437 p.
    14.    Ашкенази, Е.К. Анизотропия конструкционных материалов / Е.К. Ашкенази, Э.В. Ганов. — 2-е изд., перераб. и доп. — Л.: Машиностроение, 1980. — 248 с.
    15.    Светозарова, Е.И. Определение упругих констант клееной древесины / Е.И. Светозарова, А.В. Хапин // Изв. ВУЗов. Лесной журнал. — 1982. — № 3. — С. 63–66.
    16.    ГОСТ 16483.29-73. Древесина. Метод определения коэффициентов поперечной деформации. — Введ. 01.01.1975. — М.: Изд-во стандартов, 1974. — 7 с.
    17.    Проектирование современных конструкций из клееной древесины на принципах новой концепции / В.З. Клименко, А.Я. Найчук, В.В. Фурсов, Д.В. Михайловский. — К.: Вид-во «Сталь», 2010. — 24 с.

    References
    1.    Bogdanova, E.N. (2004). Analysis of the Causes of Building Collapse. Reinforcing Construction Methods (Analytical Report). Moscow: VNIINTPI.
    2.    Matiuschenko, D.M. Experimental and numerical investigations of glulam frames of glued wood. Scientific e-Journal of Chernihiv State Institute of Economics and Management. Series 2, Technique and Nature, 1, 92–99.
    3.    Klimenko, V.Z. (2009). The domestic experience of implementing the plywood structures into capital construction. Achievements and Problems. Budivnytstvo Ukrainy, 5, 17–21.
    4.    Mikhaylovskiy, D.V., & Matyushchenko, D.N. (2015). Stress state bent frames, taking into account the anisotropy of the physical and mechanical properties of laminated wood. Construction, Materials Science, Mechanical Engineering, 81, 124–129.
    5.    SE “State Research Institute of Building Constructions”. (2011). The constructions of buildings and structures. Design of timber structures. Common rules (DBN V.2.6-161:2010). Kyiv: Ministry for Regional Development, Building and Housing of Ukraine.
    6.    European Committee for Standardization. (2004). Eurocode 5: Design of Timber Structures. Brussels: BSI.
    7.    Naichuk, A.Ya., Serov, E.N., & Zakharevich, I.F. (2009). Some features of the calculation of glued wooden structures. In Proceedings of the International Symposium “Modern Metal and Wooden Structures: Standardization, Design, and Construction” (pp. 205–211). Brest: JSC “Brest Typography”.
    8.    Ormarsson, S., & Gíslason, Ó.V. (2016). Moisture-induced stresses in glulam frames. European Journal of Wood and Wood Products, 74(3), 307–318. DOI:10.1007/s00107-016-1006-5
    9.    Aira, J.R., Descamps, T., Van Parys, L., & Léoskool, L. (2015). Study of stress distribution and stress concentration factor in notched wood pieces with cohesive surfaces. European Journal of Wood and Wood Products, 73(3), 325–334. DOI:10.1007/s00107-015-0891-3
    10.    Povetkin, S.V., Smorchkov, A.A., Kabanov, V.A., & Tabunov, S.Yu. (1993). Designing the Constructions of Wood and Plastic. Kursk: KPI.
    11.    Smardzewski, J. (2015). Furniture Design. Cham, Switzerland: Springer.
    12.    Ashkenazi, E.K. (1978). Anisotropy of Timber and Wood-Based Materials. Moscow: Les. Prom.
    13.    Ansell, M.P. (Ed.). (2015). Wood Composites. Cambridge: Woodhead Publishing.
    14.    Ashkenazi, E.K., & Ganov, E.V. Anisotropy of Construction Materials (2nd Ed.). Leningrad: Mashinostroenie.
    15.    Svetozarova, E.I., & Khapin, A.V. (1982). Calculation of the elastic constants of glued wooden structures. Bulletin of Higher Educational Institutions: Lesnoy Zhurnal, 3, 63–66.
    16.    Ministry of Forest Industry of the USSR. (1974). Wood. Method for determination of factors of cross-sectional deformation (GOST 16483.29-73). Moscow: Standards Publishing House.
    17.    Klimenko, V.Z., Naichuk, A.Ya., Fursov, V.V., & Mikhaylovskiy, D.V. (2010). Designing the Modern Constructions of Plywood Based on a New Concept. Kyiv: Stal’.

  • Creative Commons License by Author(s)