Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Regularities of dust formation during stone cutting for construction works

  • Authors

    Lebedev Volodymyr G.
    Bespalova Alla V.
    Dashkovskaya Olga P.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2016
    Issue 2(49)
    UDC [621.91:624.12]+628.511.123
    DOI 10.15276/opu.2.49.2016.05
    Pages 24-30
  • Abstract

    When cutting stone, a large amount of dust release, which is a mixture of small, mostly sharp, mineral particles. Shallow dry dust with inhalation causes the pathological changes in organs that are a consequence of infiltration of acute and solids particles. Despite the importance of this problem, the questions of dust generation during the various working processes and its fractions distribution are practically not considered. This determines the time of dust standing in the air and its negative impact on a person. Aim: The aim of this research is to study the process of dusting during stones cutting and dust distribution on fractions regularities and quantification of dust formation process in order to improve the production equipment, staff individual and collective safety equipment. Materials and Methods: Many types of cutting can be divided into two types – a “dry” cutting and cutting with fluid. During "dry" cutting a dust represents a set of micro-chips which are cut off by the abrasive grains. The size of such chips very small: from a micrometer to a few micrometers fraction. Thus, the size of chips causes the possibility of creating dust slurry with low fall velocity, and which is located in the working space in large concentrations. Results: The following characteristic dependences were obtained as a result of research: dependence of the dust fall from the size of the dust particles, size of dust particles from minute feeding and grain range wheel, the specific amount of dust from the number of grit abrasive wheel and the temperature of the dust particles from the feeding at wheel turnover. It was shown that the distribution of chips (dust) by size will request of a normal distribution low. Dimensions of chips during cut are in the range of 0.4...6 μm. Thus, dust slurry is formed with time of particles fall of several hours. This creates considerable minute dust concentration – within 0.28∙108...1.68∙108 units/m3.

  • Keywords cutting wheel, grain size, cutting speed, microchip dimension
  • Viewed: 1285 Dowloaded: 6
  • Download Article
  • References

    Література
    1.    Чумаченко, Т.В. Фактическое расстояние между режущими зернами в эльборовом круге / Т.В. Чумаченко, В.Г. Лебедев // Проблеми техніки. — 2009. — № 2. — С. 124–134.
    2.    Аль-Аджейлат, С.А. Фактическое расстояние между режущими зернами и удельное число режущих зерен в единице поверхности эльборового круга, радиусы закругления зерен из КНБ и средняя величина стружки, снимаемая режущим зерном / С.А. Аль-Аджейлат, Т.В. Чумаченко, В.Г. Лебедев // Новые и нетрадиционные технологии в ресурсо- и энергосбережении: мат-лы науч.-техн. конф., 9–10 сентября 2010 г., Одесса. — Киев: АТМ Украины, 2010. — С. 6–8.
    3.    Аль-Аджейлат, С.А. Аналитическое определение сил и температур резания единичным эльборовым зерном / С.А. Аль-Аджейлат, В.Г. Лебедев, А.В. Усов // Вісник ХНТУСГ імені Петра Василенка. — 2009. — Вип. 81 — С. 263–270.
    4.    Редько, С.Г. Процессы теплообразования при шлифовании металлов / С.Г. Редько. — Саратов: СПИ, 1962. — 231 с.
    5.    Respiratory tract responses to dust: Relationships between dust burden, lung injury, alveolar macrophage fibronectin release, and the development of pulmonary fibrosis / K.E. Driscoll, J.K. Maurer, R.C. Lindenschmidt, et al. // Toxicology and Applied Pharmacology. — 1990. — Vol. 106, Issue 1. — PP. 88–101.
    6.    Kennedy, F.E. Frictional heating and contact temperatures / F.E. Kennedy // Modern Tribology Handbook. Vol. 1: Principles of Tribology / ed. by B. Bhushan. — Boca Raton: CRC Press, 2001. — PP. 235–272.
    7.    Маслов, Е.Н. Теория шлифования материалов / Е.Н. Маслов. — М.: Машиностроение, 1974. — 319 с.
    8.    Мущенко, Б.Л. Расчет скорости падения частиц пыли и оценка степени влияния различных сил, действующих на частицу / Б.Л. Мущенко // Научный вестник Воронежского ГАСУ. Строительство и архитектура. — 2009. — № 2(14). — С. 58–63.
    9.    Азаров, В.Н. Теоретические исследования скорости оседания мелкодисперсной пыли в воздушной среде рабочих помещений предприятий машиностроения и стройиндустрии / В.Н. Азаров, О.И. Бессараб, О.В. Кабаев // Вестник ВолгГАСУ. Сер.: Строительство и архитектура. — 2010. — Вып. 17(36). — С. 102–105.
    10.    Dorman, R.G. Dust control and air cleaning / R.G. Dorman. — Oxford: Pergamon, 1974. — 615 p.
    11.    Балтренас, П.Б. Обеспыливание воздуха на предприятиях стройматериалов / П.Б. Балтренас. — М.: Стройиздат, 1990. — 184 с.
    12.    Абразивная и алмазная обработка материалов: справочник / под ред. А.Н. Резникова. — М.: Машиностроение, 1977. — 391 с.

    References
    1.    Chumachenko, T.V., & Lebedev, V.G. (2009). Actual distance between cutting grains in Borazon wheel. Problemy Tekhniky, 2, 124–134.
    2.    Al-Adjelat, S.A., Chumachenko, T.V., & Lebedev, V.G. (2010). Actual distance between cutting grains and their specific number per surface unit area of the Borazon wheel, radius of rounding of CBN grains and mid-size of chips removed by abrasive grains. In Proceedings of Scientific and Technical Conference on Modern and Innovative Technologies of Resource and Energy Saving (pp. 6–8). Kyiv: ATM Ukrainy.
    3.    Al-Adjelat, S.A., Lebedev, V.G., & Usov, A.V. (2009). Analytical determination of cutting forces and temperatures of single borazone grain. Bulletin of Kharkiv Petro Vasylenko National Technical University of Agriculture, 81, 263–270.
    4.    Red’ko, S.G. (1962). Processes of Heat Build-Up while Grinding Metal. Saratov: GSU.
    5.    Driscoll, K.E., Maurer, J.K., Lindenschmidt, R.C., Romberger, D., Rennard, S.I., & Crosby, L. (1990). Respiratory tract responses to dust: Relationships between dust burden, lung injury, alveolar macrophage fibronectin release, and the development of pulmonary fibrosis. Toxicology and Applied Pharmacology, 106(1), 88–101. DOI:10.1016/0041-008X(90)90109-8
    6.    Kennedy, F.E. (2001). Frictional heating and contact temperatures. In B. Bhushan (Ed.), Modern Tribology Handbook (Vol. 1, pp. 235–272). Boca Raton: CRC Press.
    7.    Maslov, E.N. (1974). Theory of Grinding Materials. Moscow: Mashinostroenie.
    8.    Muschenko, B.L. (2009). Calculation of speed of falling of the dust particles and estimation of influence of the various forces acting on a particle. Scientific Herald of the Voronezh State University of Architecture and Civil Engineering: Construction and Architecture, 2, 58–63.
    9.    Azarov, V.N., Bessarab, O.I., & Kabayev, O.V. (2010). Theoretical researches of rate of subsidence of the finely divided dust in the air of working rooms of the enterprises of mechanical engineering and building industry. Bulletin of Volgograd State University of Architecture and Civil Engineering: Civil Engineering and Architecture, 17, 102–105.
    10.    Dorman, R.G. (1974). Dust Control and Air Cleaning. Oxford: Pergamon.
    11.    Baltrenas, P.B. (1990). Dedusting of Air in Enterprises of Building Materials. Moscow: Stroiizdat.
    12.    Reznikov, A.N. (Ed.). (1977). Abrasive and Diamond Processing of Materials. Moscow: Mashinostroenie.

  • Creative Commons License by Author(s)