Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Throughput increase of the covert communication channel organized by the stable steganography algorithm using spatial domain of the image

  • Authors

    Kostyrka Olesya V.

  • Subject

    COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

  • Year 2016
    Issue 2(49)
    UDC 004.056.55:004.932
    DOI 10.15276/opu.2.49.2016.11
    Pages 76-83
  • Abstract

    At the organization of a covert communication channel a number of requirements are imposed on used steganography algorithms among which one of the main are: resistance to attacks against the built-in message, reliability of perception of formed steganography message, significant throughput of a steganography communication channel. Aim: The aim of this research is to modify the steganography method, developed by the author earlier, which will allow to increase the throughput of the corresponding covert communication channel when saving resistance to attacks against the built-in message and perception reliability of the created steganography message, inherent to developed method. Materials and Methods: Modifications of a steganography method that is steady against attacks against the built-in message which is carrying out the inclusion and decoding of the sent (additional) information in spatial domain of the image allowing to increase the throughput of the organized communication channel are offered. Use of spatial domain of the image allows to avoid accumulation of an additional computational error during the inclusion/decoding of additional information due to “transitions” from spatial domain of the image to the area of conversion and back that positively affects the efficiency of decoding. Such methods are considered as attacks against the built-in message: imposing of different noise on a steganography message, filtering, lossy compression of a steganography message where the JPEG and JPEG2000 formats with different quality coefficients for saving of a steganography message are used. Results: It is shown that algorithmic implementations of the offered methods modifications remain steady against the perturbing influences, including considerable, provide reliability of perception of the created steganography message, increase the throughput of the created steganography communication channel in comparison with the algorithm implementing steganography method taken as a basis. All conclusions are confirmed with results of representative computational experiments.

  • Keywords

    steganography algorithm, digital image, throughput of a steganography channel, resistance to attacks against the built-in message, reliability of perception

  • Viewed: 972 Dowloaded: 5
  • Download Article
  • References

    Література
    1.    Хорошко, В.А. Методы и средства защиты информации / В.А. Хорошко, А.А. Чекатков; ред. Ю.С. Ковтанюк. — К.: ЮНИОР, 2003. — 505 с.
    2.    Ленков, С.В. Методы и средства защиты информации: в 2 т. / С.В. Ленков, Д.А. Перегудов, В.А. Хорошко. — К.: Арий, 2008 — . — Т.2: Информационная безопасность. — 2008. — 344 с.
    3.    Стеганография, цифровые водяные знаки и стеганоанализ: монография / А.В. Аграновский, А.В. Балакин, В.Г. Грибунин, С.А. Сапожников. — М.: Вузовская книга, 2009. — 220 с.
    4.    Конахович, Г.Ф. Компьютерная стеганография: теория и практика / Г.Ф. Конахович, А.Ю. Пузыренко. — К.: МК-Пресс, 2006. — 288 с.
    5.    Al-Otum, H.M. A robust blind color image watermarking based on wavelet-tree bit host difference selection / H.M. Al-Otum, N.A. Samara // Signal Processing. ― 2010. ― Vol. 90, Issue 8. ― РP. 2498–2512.
    6.    Wang, T.-Y. A novel robust color image digital watermarking algorithm based on discrete cosine transform / T.-Y. Wang, H.-W. Li // Journal of Computers. ― 2013. ― Vol. 8, No. 10. ― PP. 2507–2511.
    7.    Harish, N.J. Hybrid robust watermarking technique based on DWT, DCT and SVD / N.J. Harish, B.B.S. Kumar, A. Kusagur // International Journal of Advanced Electrical and Electronics Engineering. ― 2013. ― Vol. 2, Issue 5. ― РP. 137–143.
    8.    Fang, H. Robust watermarking scheme for multispectral images using discrete wavelet transform and tucker decomposition / H. Fang, Q. Zhou, K. Li // Journal of Computers. ― 2013. ― Vol. 8, No. 11. ― РP. 2844–2850.
    9.    Qin, C. A novel digital watermarking algorithm in contourlet domain / C. Qin, X. Wen // Journal of Information & Computational Science. ― 2014. ― Vol. 11, No. 2. ― РP. 519–526.
    10.    Yang, Q.T. A novel robust watermarking scheme based on neural network / Q.T. Yang, T.G. Gao, L. Fan // Proceedings of the 2010 International Conference on Intelligent Computing and Integrated Systems (ICISS), 22-24 October 2010, Guilin, China. ― Piscataway, NJ: IEEE, 2010. ― PP. 71–75.
    11.    A survey on image steganography and steganalysis / B. Li, J.H. He, J.W. Huang, Y.Q. Shi // Journal of Information Hiding and Multimedia Signal Processing. — 2011. — Vol. 2, No. 2. — PP. 142–172.
    12.    Fan, C.-H. A robust watermarking technique resistant JPEG compression / C.-H. Fan, H.-Y. Huang, W.-H. Hsu // Journal of Information Science and Engineering. — 2011. — Vol. 27, No. 1. — PP. 163–180.
    13.    Bazargani, M. Digital image watermarking in wavelet, contourlet and curvelet domains / M. Bazargani, H. Ebrahimi, R. Dianat // Journal of Basic and Applied Scientific Research. ― 2012. ― Vol. 2, Issue 11. ― РP. 11296–11308.
    14.    Костырка, О.В. Анализ преимуществ пространственной области цифрового изображения-контейнера для стеганопреобразования / О.В. Костырка // Інформатика та математичні методи в моделюванні. ― 2013. ― Т. 3, № 3. ― С. 275–282.
    15.    Кобозева, А.А. Условия обеспечения устойчивости стеганоалгоритма при организации стеганопреобразования в пространственной области контейнера-изображения / А.А. Кобозева, О.В. Костырка // Інформаційна безпека. ― 2013. ― № 3(11). ― С. 29–35.
    16.    Костирка, О.В. Стеганографічний алгоритм, стійкий до накладання шуму / О.В. Костирка // Безпека інформації. ― 2014. ― Т. 20, № 1. ― С. 71–75.
    17.    Кобозева, А.А. Стеганопреобразование пространственной области изображения-контейнера, устойчивое к атакам против встроенного сообщения / А.А. Кобозева, Е.Ю. Лебедева, О.В. Костырка // Проблемы региональной энергетики. — 2014. — № 1(24). — С. 71–81.
    18.    Костирка, О.В. Модифікація стійкого до збурних дій стеганоперетворення просторової області зображення-контейнера / О.В. Костирка // Інформатика та математичні методи в моделюванні. ― 2016. ― Т. 6, № 1. ― С. 85–93.
    19.    Гонсалес, Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс; пер. с англ. П.А. Чочиа. — М.: Техносфера, 2006. — 1070 с.
    20.    NRCS Photo Gallery [Електронний ресурс] / United States Department of Agriculture. Washington, USA. — Режим доступу: http://photogallery.nrcs.usda.gov (Дата звернення: 26.07.2012).

    References
    1.    Khoroshko, V.A., & Chekatkov, A.A. (2003). Methods and Tools for Information Security. Kyiv: Junior.
    2.    Lenkov, S.V., Peregudov, D.A., & Khoroshko, V.A. (2008). Methods and Means of Information Security. Vol. 2, The Information Security. Kyiv: Ariy.
    3.    Agranovskij, A.V., Balakin, A.V., Gribunin, V.G., & Sapozhnikov, S.A. (2009). Steganography, Digital Watermarking, and Steganalysis. Moscow: Vuzovskaya Kniga.
    4.    Konahovich, G.F., & Puzyrenko, A.Yu. (2006). Computer Steganography: Theory and Practice. Kyiv: MK-Press.
    5.    Al-Otum, H.M., & Samara, N.A. (2010). A robust blind color image watermarking based on wavelet-tree bit host difference selection. Signal Processing, 90(8), 2498–2512. DOI:10.1016/j.sigpro.2010.02.017
    6.    Wang, T.-Y., & Li, H.-W. (2013). A novel robust color image digital watermarking algorithm based on discrete cosine transform. Journal of Computers, 8(10), 2507–2511. DOI:10.4304/jcp.8.10.2507-2511
    7.    Harish, N.J., Kumar, B.B.S., & Kusagur, A. (2013). Hybrid robust watermarking technique based on DWT, DCT and SVD. International Journal of Advanced Electrical and Electronics Engineering, 2(5), 137–143.
    8.    Fang, H., Zhou, Q., & Li, K. (2013). Robust watermarking scheme for multispectral images using discrete wavelet transform and tucker decomposition. Journal of Computers, 8(11), 2844–2850. DOI: 10.4304/jcp.8.11.2844-2850
    9.    Qin, C., & Wen, X. (2014). A novel digital watermarking algorithm in contourlet domain. Journal of Information & Computational Science, 11(2), 519–526. DOI:10.12733/jics20102841
    10.    Yang, Q.T., Gao, T.G., & Fan, L. (2010). A novel robust watermarking scheme based on neural network. In Z. Zhang (Ed.), Proceedings of the 2010 International Conference on Intelligent Computing and Integrated Systems (ICISS’2010) (pp. 71–75). Piscataway, NJ: IEEE. DOI:10.1109/ICISS.2010.5655017
    11.    Li, B., He, J.H., Huang, J.W., & Shi, Y.Q. (2011). A survey on image steganography and steganalysis. Journal of Information Hiding and Multimedia Signal Processing, 2(2), 142–172.
    12.    Fan, C.-H., Huang, H.Y., & Hsu, W.-H. (2011). A robust watermarking technique resistant JPEG compression. Journal of Information Science and Engineering, 27(1), 163–180.
    13.    Bazargani, M., Ebrahimi, H., & Dianat, R. (2012). Digital image watermarking in wavelet, contourlet and curvelet domains. Journal of Basic and Applied Scientific Research, 2(11), 11296–11308.
    14.    Kostyrka, O.V. (2013). Analysis on the benefits of spatial domain of cover image for steganography transformation. Informatics and Mathematical Methods in Simulation, 3(3), 275–282.
    15.    Kobozeva, A.A., & Kostyrka, O.V. (2013). Terms of ensuring the sustainability of the steganography algorithm during the organization of steganography transformation into a spatial domain of cover image. Informative Safety, 3, 29–35.
    16.    Kostyrka, O. (2014). Steganographic algorithm robust against noise imposition. Ukrainian Scientific Journal of Information Security, 20(1), 71–75.
    17.    Kobozeva, A., Lebedeva, E., & Kostyrka, O. (2014). Stego transformation of spatial domain of cover image robust against attacks on embedded message. Problemele Energeticii Regionale, 1, 71–81.
    18.    Kostyrka, О.V. (2016). Modification of sustainable steganography algorithm which robust against disturbance of steganography transformation into a spatial domain of cover image. Informatics and Mathematical Methods in Simulation, 6(1), 85–93.
    19.    Gonzalez, R.C., & Woods, R.E. (2008). Digital Image Processing (3rd Ed.). Upper Saddle River, N.J.: Prentice Hall.
    20.    USDA: United States Department of Agriculture (n.d.). NRCS Photo Gallery. Retrieved from http://photogallery.nrcs.usda.gov/res/sites/photogallery/

  • Creative Commons License by Author(s)