Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    New approach development for solution of cloning results detection problem in lossy saved digital image

  • Authors

    Kobozeva Alla А.
    Grigorenko Svitlana M.

  • Subject

    COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

  • Year 2016
    Issue 2(49)
    UDC 004.932:004.052.42
    DOI 10.15276/opu.2.49.2016.10
    Pages 62-69
  • Abstract

    The problem of detection of the digital image falsification results performed by cloning is considered – one of the most often used program tools implemented in all modern graphic editors. Aim: The aim of this research is further development of approach to the solution of a cloning detection problem having the cloned image saved in a lossy format, offered by authors earlier. Materials and Methods: Further development of a new approach to the solution of a problem of cloning results detection in the digital image is presented. Approach is based on the accounting of small changes of cylindrical body volume with the generatric, that is parallel to the OZ axis, bounded above by the interpolating function plot for a matrix of brightness of the analyzed image, and bounded below by the XOY plane, during the compression process. Results: Adaptation of the offered approach to conditions of the cloned image compression with the arbitary coefficient of compression quality is carried out (compression ratio). The approach solvency in the conditions of the cloned image compression according to the algorithms different from the JPEG standard is shown: JPEG2000, compression with use of low-rank approximations of the image matrix (matrix blocks). The results of computational experiment are given. It is shown that the developed approach can be used to detect the results of cloning in digital video in the conditions of lossy compression after cloning process.

  • Keywords digital image, cloning detection, lossy compression, low-rank approximation
  • Viewed: 698 Dowloaded: 4
  • Download Article
  • References

    Література
    1.    Thajeel, S.A. State of the art of copy-move forgery detection techniques: A Review / S.A. Thajeel, G.B. Sulong // International Journal of Computer Science. — 2013. — Vol. 10, Issue 6. — PP. 174–183.
    2.    Kotkar, P.S. Detecting region duplication forgery in digital image using SIFT features / P.S. Kotkar, S.S. Shriramwar // International Journal of Current Engineering and Technology. — 2014. — Vol. 4, No. 3. — PP. 1437–1440.
    3.    Pan, X. Region duplication detection using image feature matching / X. Pan, S. Lyu // IEEE Transactions on Information Forensics and Security. — 2010. — Vol. 5, Issue 4. — PP. 857–867.
    4.    Copy-move forgery detection and localization by means of robust clustering with J-Linkage / I. Amerini, L. Ballan, R. Caldelli, et al. // Signal Processing: Image Communication. — 2013. — Vol. 28, Issue 6. — PP. 659–669.
    5.    Huang, H. Detection of copy-move forgery in digital images using SIFT algorithm / H. Huang, W. Guo, Y. Zhang // Proceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA’08), 19–20 December 2008, Wuhan, China. — Los Alamitos: IEEE, 2008. — Vol. 2. — PP. 272–276.
    6.    Image copy-move forgery detection based on SURF / B. Xu, J. Wang, G. Liu, Y. Dai // Proceedings of 2010 International Conference on Multimedia Information Networking and Security (MINES’2010), 4–6 November 2010, Nanjing, Jiangsu. — Los Alamitos: IEEE, 2010. — PP. 889–892.
    7.    A SIFT-based forensic method for copy–move attack detection and transformation recovery / I. Amerini, L. Ballan, R. Caldelli, et al. // IEEE Transactions on Information Forensics and Security. — 2011. — Vol. 6, Issue 3. — PP. 1099–1110.
    8.    Кобозева, А.А. Теоретические основы нового подхода к решению задачи выявления результатов клонирования в цифровом изображении, сохраненном в формате с потерями / А.А. Кобозева, С.Н. Григоренко // Реєстрація, зберігання і обробка даних. — 2015. — Т. 17, № 4. — С. 21–30.
    9.    NRCS Photo Gallery [Електронний ресурс] / United States Department of Agriculture. Washington, USA. — Режим доступу: http://photogallery.nrcs.usda.gov (Дата звернення: 26.07.2012).
    10.    Деммель, Д. Вычислительная линейная алгебра: теория и приложения / Д. Деммель; пер. с англ. Х.Д. Икрамова. — М.: Мир, 2001. — 430 с.
    11.    Конахович, Г.Ф. Компьютерная стеганография: теория и практика / Г.Ф. Конахович, А.Ю. Пузыренко. — К.: МК-Пресс, 2006. — 288 с.

    References
    1.    Thajeel, S.A., & Sulong, G.B. (2013). State of the art of copy-move forgery detection techniques: A Review. International Journal of Computer Science, 10(6), 174–183.
    2.    Kotkar, P.S., & Shriramwar, S.S. (2014). Detecting region duplication forgery in digital image using SIFT features. International Journal of Current Engineering and Technology, 4(3), 1437–1440.
    3.    Pan, X., & Lyu, S. (2010). Region duplication detection using image feature matching. IEEE Transactions on Information Forensics and Security, 5(4), 857–867. DOI:10.1109/TIFS.2010.2078506
    4.    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Del Tongo, L., & Serra, G. (2013). Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Signal Processing: Image Communication, 28(6), 659–669. DOI:10.1016/j.image.2013.03.006
    5.    Huang, H., Guo, W., & Zhang, Y. (2008). Detection of copy-move forgery in digital images using SIFT algorithm. In Y. Zhang, H. Tan, Q. Luo (Eds.), Proceedings of the Pacific-Asia Workshop on Computational Intelligence and Industrial Application (PACIIA’08) (Vol. 2, pp. 272–276). Los Alamitos: IEEE. DOI:10.1109/PACIIA.2008.240
    6.    Xu, B., Wang, J., Liu, G., & Dai, Y. (2010). Image copy-move forgery detection based on SURF. In S. Gritzalis, S. Lian, X. Chen (Eds.), Proceedings of the Second International Conference on Multimedia Information Networking and Security (MINES’2010) (pp. 889–892). Los Alamitos: IEEE. DOI:10.1109/MINES.2010.189
    7.    Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., & Serra, G. (2011). A SIFT-based forensic method for copy–move attack detection and transformation recovery. IEEE Transactions on Information Forensics and Security, 6(3), 1099–1110. DOI:10.1109/TIFS.2011.2129512
    8.    Kobozeva, A.A., & Grygorenko, S.N. (2015). Theoretical basis for a new approach to the problem of identifying the results of cloning in digital images stored in lossy formats. Data Rec., Storage & Processing, 17(4), 21–30.
    9.    USDA: United States Department of Agriculture (n.d.). NRCS Photo Gallery. Retrieved from http://photogallery.nrcs.usda.gov/res/sites/photogallery/
    10.    Demmel, J.W. (1997). Applied Numerical Linear Algebra. Philadelphia: SIAM.
    11.    Konahovich, G.F., & Puzyrenko, A.Yu. (2006). Computer Steganography: Theory and Practice. Kyiv: MK-Press.

  • Creative Commons License by Author(s)