Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Calculation of kinetic parameters of amino-formaldehyde polymers formation in the presence of calcium ions

  • Authors

    Arhipova Viktoriya V.
    Smotraiev Roman V.
    Gruzdeva Olena V.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2016
    Issue 1(48)
    UDC 678.652+661.842
    DOI 10.15276/opu.1.48.2016.15
    Pages 89-96
  • Abstract

    Calcium carbonate is on of widely used fillers of composite materials. The area of its application depend on disperse structure, particle shape and other. The modification of calcium carbonate by high-molecular polymers allows changing its characteristics and surface properties in a wide range. The modification of calcium carbonate often carried out with use of amino-formaldehyde polymers (AFP). Aim: The aim of this work is to determine the kinetic characteristics of amino-formaldehyde polymers polycondensation process in the presence of calcium ions. Materials and Methods: The mechanism of AFP polycondensation is complex and depends on various factors. Polycondensation of AFP took place under following conditions: the temperature is 20, 30, 60° C; the molar ratio of carbamide to formaldehyde is 1:1.25; the polycondensation duration is 2 hours; the mass ratio of CaCO3:AFP = 1:1. The polycondensation process was carried out in calcium chloride solution with рН=2…5.5. The concentration of formaldehyde and metilol groups determined during the experiment using chemical titrimetric method. Results: It is shown that polycondensation process of AFP in the presence of Сa2+ ions at their concentration from 0 to 2.25 mol/l (0…90 g/l) leads to acceleration of process more than by 1.8 times at temperature of 20°C. Further increase of Сa2+ concentration leads to reduction of process speed. At temperature of 30°C the speed of process almost does not change in the range of Сa2+ concentration from 0 to 2.25 mol/l and further decreases slightly. For all range of Сa2+ concentration at temperature of 60°C the reduction of process speed is observed. Influence of Сa2+ on process of polycondensation confirms assumption made earlier of formation of weak bonds between AFP and calcium ions which at low temperatures interfere with hydrolysis of methyleneurea and collapse at increasing of process temperature.

  • Keywords calcium carbonate, amino-formaldehyde polymers, constant of speed
  • Viewed: 1024 Dowloaded: 8
  • Download Article
  • References

    Література
    1.    Grassmann, O. Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups / O. Grassmann, P. Löbmann // Biomaterials. — 2004. — Vol. 25, Issue 2. — PP. 277—282.
    2.    Effects of PAA additive and temperature on morphology of calcium carbonate particles / J. Yu, M. Lei, B. Cheng, X. Zhao // Journal of Solid State Chemistry. — 2004. — Vol. 177, Issue 3. — PP. 681—689.
    3.    Kim, I.W. Effects of some nonionic polymeric additives on the crystallization of calcium carbonate / I.W. Kim, R.E. Robertson, R. Zand // Crystal Growth & Design. — 2005. — Vol. 5, Issue 2. — PP. 513—522.
    4.    Brydson, J.A. Plastics materials / J.A. Brydson. — 7th Ed. — Oxford: Butterworth-Heinemann, 2000. — 920 p.
    5.    Badanie procesu precypitacji węglanu wapnia odmiany aragonitowej / M. Trypuć, U. Kiełkowska, Z. Torski, G. Łyjak // Chemik. — 1999. — Nr. 1. — PP. 11—15.
    6.    Effect of filler treatments on rheological behavior of calcium carbonate and talc-filled polypropylene hybrid composites / M.S.F. Samsudin, Z.A. Mohd Ishak, S.S. Jikan, et al. // Journal of Applied Polymer Science. — 2006. — Vol. 102, Issue 6. — PP. 5421—5426.
    7.    Study of dispersion of nano-CaCO3 in polymer HDPE and mechanical properties of HDPE/nano-CaCO3 composite / Q.-J. Li, Y.-J. Wu, H.-J. Yang, Q.-T. Li // Journal of Guizhou University of Technology. Natural Science Edition. — 2005. — Issue 6. — PP. 25—28.
    8.    Изучение сорбции ионов молибдена карбамидоформальдегидными полимерами / Б.И. Мельников, О.А. Перехрест, Р.В. Смотраев, В.А. Тарасенко // Пр. Одес. політехн. ун-ту. — 2000. — Вип. 2(11). — С. 212—216.
    9.    Мельников, Б.И. Исследование возможности осаждения мела в присутствии карбамидоформальдегидных полимеров / Б.И. Мельников, В.В. Архипова // Хімія і сучасні технології: ІІІ міжнар. наук.–техн. конф. студентів, аспірантів та молодих вчених, 22–24 трав. 2007 р.: тез. допов. — Дніпропетровськ: УДХТУ, 2007. — С. 24.
    10.    Архипова, В.В. Дослідження процесу осадження карбонату кальцію в присутності карбамідоформальдегідних полімерів / В.В. Архипова, Р.В. Смотраєв, Б.І. Мельников // Вопросы химии и химической технологии. — 2009. — № 5. — C. 97—100.
    11.    Denisov, E.T. Chemical kinetics: Fundamentals and new developments / E.T. Denisov, O.M. Sarkisov, G.I. Likhtenshtein. — Amsterdam; Boston: Elsevier, 2003. — 547 p.

    References
    1.    Grassmann, O., & Löbmann, P. (2004). Biomimetic nucleation and growth of CaCO3 in hydrogels incorporating carboxylate groups. Biomaterials, 25(2), 277–282. DOI:10.1016/S0142-9612(03)00526-X
    2.    Yu, J., Lei, M., Cheng, B, & Zhao, X. (2004). Effects of PAA additive and temperature on morphology of calcium carbonate particles. Journal of Solid State Chemistry, 177(3), 681—689. DOI:10.1016/j.jssc.2003.08.017
    3.    Kim, I.W., Robertson, R.E., & Zand, R. (2005). Effects of some nonionic polymeric additives on the crystallization of calcium carbonate. Crystal Growth & Design, 5(2), 513—522. DOI:10.1021/cg049721q
    4.    Brydson, J.A. (2000). Plastics Materials (7th Ed.). Oxford: Butterworth-Heinemann.
    5.    Trypuć, M., Kiełkowska, U., Torski, Z., & Łyjak, G. (1999). Badanie procesu precypitacji węglanu wapnia odmiany aragonitowej. Chemik, 1, 11—15.
    6.    Samsudin, M.S.F., Mohd Ishak, Z.A., Jikan, S.S., Ariff, Z.M., & Ariffin, A. (2006). Effect of filler treatments on rheological behavior of calcium carbonate and talc-filled polypropylene hybrid composites. Journal of Applied Polymer Science, 102(6), 5421—5426. DOI:10.1002/app.25054
    7.    Li, Q.-J., Wu, Y.-J., Yang, H.-J., & Li, Q.-T. (2005). Study of dispersion of nano-CaCO3 in polymer HDPE and mechanical properties of HDPE/nano-CaCO3 composite. Journal of Guizhou University of Technology: Natural Science Edition, 6, 25—28.
    8.    Melnikov, B.I., Perekhrest, О.А., Smotrayev, R.V., & Tarasenko, V.A. (2000). The study of molybdenum ions sorption by the carbamideformaldehyde polymers. Odes’kyi Politechnichnyi Universytet. Pratsi, 2, 212—216.
    9.    Melnikov, B.I., & Arkhipova, V.V. (2007). Investigation of the possibility of deposition of chalk in the presence of urea-formaldehyde polymers. In Proceedings of the 3rd International Scientific and Technical Conference of Students and Young Scientists “Chemistry and Modern Technologies” (p. 24). Dnipropetrovsk: Ukrainian State University of Chemical Technology.
    10.    Arkhipova, V.V., Smotrayev, R.V., & Melnikov, B.I. (2009). The investigation processes of calcium carbonate precipitation in the presence of carbamide formaldehyde polymers. Issues of Chemistry and Chemical Technology, 5, 97—100.
    11.    Denisov, E.T., Sarkisov, O.M., & Likhtenshtein, G.I. (2003). Chemical Kinetics: Fundamentals and New Developments. Amsterdam; Boston: Elsevier.

  • Creative Commons License by Author(s)