Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Numerical investigation of thermal field expansion in fiber reinforced composites

  • Authors

    Melentiev Ruslan Yu.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2016
    Issue 1(48)
    UDC 624.016:536.241
    DOI 10.15276/opu.1.48.2016.03
    Pages 9-18
  • Abstract

    The research is devoted to problems of heat transfer in a multicomponent body with anisotropic thermal properties, such as polymer composite materials with fiberfill and other layered systems. Aim: The aim of this study is the determination of a temperature gradient on a heating surface and the heat transfer evaluation between components of a simulated body. Materials and Methods: Analytical modeling methods are complicated by very laborious computations due to an anisotropy of composites structure and properties. Numerical simulation methods have a wide tool package, which allows to avoid many assumptions, to reduce computation time and visualize conclusions. Results: In the paper discussed a thermal field formation of the annular heat source in plane and space dimensions, that allows to evaluate the process of thermal development in single layer of material and in their connecting. Presented results of numerical modeling establish locations of maximum and minimum temperature of the heated body. Thermophysical body anisotropy leads to asymmetrical distribution of heat. Clearly expressed undulating temperature profile was detected on the heated surface, moreover, temperature in some sectors of outermost layer significantly exceeds the average temperature of the heated surface. The existence of the described temperature gradient has been confirmed in the previous experimental study of the author. In order to simplify a structure of the model and reduce computation time for following or similar tasks has adopted an attempt to translate the anisotropic body to isotropic by adjusting of thermal properties. The resulting isotropic model has a high degree of correlation to the original, but it is less informative and should be corrected by special coefficients.

  • Keywords

    numerical investigation, thermal field, temperature, heat transfer composite materials

  • Viewed: 937 Dowloaded: 7
  • Download Article
  • References

    Література
    1.    Исследования теплопроводности углепластиков в широком диапазоне эксплуатационных температур с использованием элементов натурных конструкций / С.В. Резник, О.В. Денисов, В.А. Нелюб и др. // Все материалы. Энцикл. справ. — 2012. — № 3. — С. 2–6.
    2.    Micillo, C. Innovative manufacturing for automated drilling operations / C. Micillo, J. Huber // Advanced Fabrication Processes: Proceedings of the 47th Meeting of the AGARD Structures and Materials Panel, 26-28 September 1978, Florence, Italy. — Neuilly-sur-Seine: AGARD, 1979. — PP. 4.1–4.15.
    3.    Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics / F. Makhdum, V.A. Phadnis, A. Roy, V.V. Silberschmidt // Journal of Sound and Vibration. — 2014. — Vol. 333, Issue 23. — PP. 5939–5952.
    4.    On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part II: Nanomechanical study of thermally aged CFRP composites / J.L. Merino-Pérez, A. Hodzic, E. Merson, S. Ayvar-Soberanis // Composite Structures. — 2015. — Vol. 123. — PP. 30–34.
    5.    On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation / J.L. Merino-Pérez, R. Royer, S. Ayvar-Soberanis, et al. // Composite Structures. — 2015. — Vol. 123. — PP. 161–168. DOI:10.1016/j.compstruct.2014.12.033
    6.    Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis / C.S. Wu, Y.L. Liu, Y.C. Chiu, Y.S. Chiu // Polymer Degradation and Stability. — 2002. — Vol. 78, Issue 1. — PP. 41–48.
    7.    Brinksmeier, E. Drilling of composites and resulting surface integrity / E. Brinksmeier, S. Fangmann, R. Rentsch // CIRP Annals – Manufacturing Technology. — 2011. — Vol. 60, Issue 1. — PP. 57–60.
    8.    Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic / M.K. Nor Khairusshima, C.H. Che Hassan, A.G. Jaharah, et al. // Wear. — 2013. — Vol. 302, Issues 1–2. — PP. 1113–1123.
    9.    Pecat, O. Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material / O. Pecat, E. Brinksmeier // Procedia CIRP. — 2014. — Vol. 14. — PP. 142–147.
    10.    Sheikh-Ahmad, J.Y. Drilling of carbon/epoxy composites by electrical discharge machining [Електронний ресурс] / J.Y. Sheikh-Ahmad, S.R. Shinde // Proceedings of the 1st International Conference on Industrial, Systems and Manufacturing Engineering (ISME’14), 11–13 November 2014, Amman, Jordan. — Режим доступу: http://dx.doi.org/10.13140/2.1.2515.4244 (Дата звернення: 25.10.2015).
    11.    Дульнев, Г.Н. Теплопроводность смесей и композиционных материалов / Г.Н. Дульнев, Ю.П. Заричняк. — Л.: Энергия, 1974. — 264 с.
    12.    Михайловский, К.В. Разработка высокотеплопроводных полимерных композиционных материалов для космических конструкций [Электронный ресурс] / К.В. Михайловский, П.В. Просунцов, С.В. Резник // Инженерный журнал: наука и инновации. — 2012. — № 9. — Режим доступа: http://dx.doi.org/10.18698/2308-6033-2012-9-375 (Дата обращения: 24.12.2015).
    13.    Сипайлов, В.А. Тепловые процессы при шлифовании и управление качеством поверхности / В.А. Сипайлов; ред. Г.З. Серебренников. — М.: Машиностроение, 1978. — 167 с.
    14.    Carslaw, H.S. Introduction to the mathematical theory of the conduction of heat in solids / H.S. Carslaw. — 2nd Ed. — London: MacMillan, 1945. — 268 p.
    15.    Мелентьев, Р.Ю. Компьютерное моделирование теплового поля в элементарном объеме полимерных композиционных материалов / Р.Ю. Мелентьев // Проблемы машиностроения. — 2014. — Т. 17, № 2. — С. 3–8.
    16.    Мелентьев, Р.Ю. Определение теплопроводности полимерных композиционных материалов / Р.Ю. Мелентьев // Научный вестник ДГМА. — 2013. — № 2(12Е). — С. 123–130.
    17.    Мелентьев, Р.Ю. Особенности механической обработки полимерных композиционных материалов / Р.Ю. Мелентьев, В.В. Натальчишин // Збірник наукових праць Національного університету кораблебудування. — 2013. — № 4(449). — С. 30–34.

    References
    1.    Reznik, S.V., Denisov, O.V., Nelyub, V.A., Borodulin, A.S., Buyanov, I.A., & Chudnov, I.V. (2012). Thermal conductivity studies of carbon-filled plastics in broad range of operating temperatures with use of full-scale construction components. Vse Materialy. Entsiklopedicheskii Spravochnik, 3, 2–6.
    2.    Micillo, C., Huber, J. (1978). Innovative manufacturing for automated drilling operations. In Advanced Fabrication Processes, AGARD Conf. Proc. No. 256 (paper 4.1). Neuilly-sur-Seine: AGARD.
    3.    Makhdum, F., Phadnis, V.A., Roy, A., & Silberschmidt, V.V. (2014). Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics. Journal of Sound and Vibration, 333(23), 5939–5952. DOI:10.1016/j.jsv.2014.05.042
    4.    Merino-Pérez, J.L., Hodzic, A., Merson, E., & Ayvar-Soberanis, S. (2015). On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part II: Nanomechanical study of thermally aged CFRP composites. Composite Structures, 123, 30–34. DOI:10.1016/j.compstruct.2014.12.035
    5.    Merino-Pérez, J.L., Royer, R., Ayvar-Soberanis, S., Merson, E., & Hodzic, A. (2015). On the temperatures developed in CFRP drilling using uncoated WC-Co tools Part I: Workpiece constituents, cutting speed and heat dissipation. Composite Structures, 123, 161–168. DOI:10.1016/j.compstruct.2014.12.033
    6.    Wu, C.S., Liu, Y.L., Chiu, Y.C., & Chiu, Y.S. (2002). Thermal stability of epoxy resins containing flame retardant components: an evaluation with thermogravimetric analysis. Polymer Degradation and Stability, 78(1), 41–48. DOI:10.1016/S0141-3910(02)00117-9
    7.    Brinksmeier, E., Fangmann, S., & Rentsch, R. (2011). Drilling of composites and resulting surface integrity. CIRP Annals – Manufacturing Technology, 60(1), 57–60. DOI:10.1016/j.cirp.2011.03.077
    8.    Nor Khairusshima, M.K., Che Hassan, C.H., Jaharah, A.G., Amin, A.K.M., & Md Idriss, A.N. (2013). Effect of chilled air on tool wear and workpiece quality during milling of carbon fibre-reinforced plastic. Wear, 302(1–2), 1113–1123. DOI:10.1016/j.wear.2013.01.043
    9.    Pecat, O., & Brinksmeier, E. (2014). Tool wear analyses in low frequency vibration assisted drilling of CFRP/Ti6Al4V stack material. Procedia CIRP, 14, 142–147. DOI:10.1016/j.procir.2014.03.050
    10.    Sheikh-Ahmad, J.Y., & Shinde, S.R. (2014). Drilling of carbon/epoxy composites by electrical discharge machining. In Proceedings of the 1st International Conference on Industrial, Systems and Manufacturing Engineering (ISME’14). Retrieved from http://dx.doi.org/10.13140/2.1.2515.4244
    11.    Dulnev, G.N., & Zarichnyak, Y.P. (1974). Thermal Conductivity of Mixtures and Composite Materials. Leningrad: Energiya.
    12.    Mihajlovskiy, K.V., Prosuntsov, P.V., & Reznik, S.V. (2012). On the development of space structures from high thermal conductivity polymer composite materials. Engineering Journal: Science and Innovation, 9. Retrieved from http://dx.doi.org/10.18698/2308-6033-2012-9-375
    13.    Sipaylov, V.A. (1978). Thermal Processes at Grinding and Surface Quality Management. Moscow: Mashinostroenie.
    14.    Carslaw, H.S. (1945). Introduction to the Mathematical Theory of the Conduction of Heat in Solids (2nd Ed.). London: MacMillan.
    15.    Melentiev, R.Yu. (2014). Computer modeling of the thermal field in the elementary volume of polymer composites. Journal of Mechanical Engineering, 17(2), 3–8.
    16.    Melentiev, R.Y. (2013). Determination of the thermal conductivity of polymer composites. Scientific Herald of the DSEA, 2, 123–130.
    17.    Melentiev, R.Yu., & Natalchishin, V.V. (2013). Specific features of mechanical processing of polymeric composite materials. Collection of Scientific Publications of the National University of Shipbuilding, 4, 30—34.

  • Creative Commons License by Author(s)