Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Numerical-analytical solution of boundary problems for the systems of ordinary differential equations with variable coefficients

  • Authors

    Orobey V. F.
    Kostrova Galina Viktorovna

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2007
    Issue 1(27)
    UDC 539.3
    DOI
    Pages 23-31
  • Abstract

    The procedure of solving boundary problems for the systems of ordinary differential equations with variable coefficients is proposed, using the problems of flat shape stability in thin-walled rod systems bending as an example. The equations of thin-walled rod stability with the constant value of the bending moment have been integrated, and the solution of Cauchy problem is presented in a normal form. The equations for a boundary problem of a discretized rod system is formed by the algorithm of elements method, and the critical forces and moments are determined from the transcendental equation.

  • Keywords
  • Viewed: 1001 Dowloaded: 2
  • Download Article
  • References

    1.    Власов В.З. Тонкостенные упругие стержни. — М.: Физматгиз, 1959. — 568 с.
    2.    Баженов В.А. Численные методы в механике / Баженов В.А., Дащенко А.Ф., Коломиец Л.В., Оробей В.Ф. — Одесса: Стандаръ, 2005. — 564 с.
    3.    Прочность, устойчивость, колебания. Справочник в 3-х т. / Под. ред. И.А. Биргера и Я.Г. Пановко. — М.: Машиностоение, 1968. — Т. 3. — 568 с.
     

  • Creative Commons License by Author(s)