Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    METHODS OF CONSTRUCTION OF THE GENERALIZED HARDENING CURVE

  • Authors

    Kozbur G.
    Shkodzinsky O.
    Hlado O.

  • Subject

    INFORMACION TECHNOLOGY. AUTOMATION

  • Year 2020
    Issue 2(61)
    UDC 620.171.3
    DOI 10.15276/opu.2.61.2020.09
    Pages 78-85
  • Abstract

     The development of new structural materials and increasing requirements for the efficiency and safety of operation of structures and at the same time, reducing their material consumption, tighten the requirements for the accuracy of the experimental and calculated parts of the study. The experimental implementation of the entire spectrum of stress-strain states of samples of structural elements requires the destruction of a large number of samples, the creation and maintenance of cost equipment. Therefore, the search for effective methods for calculating the predicted critical loads for structural elements and determining a realistic safety factor is an urgent task. Stresses and strains throughout the process of loading the material are monitored by deformation curves. In this study attention is paid to the area of hardening of the deformation curve, which reflects the plastic deformation of the material after reaching the yield strength. The stress strain curves in principal stresses and principal strains are primary for further processing and analysis. The aim of the work is to propose an universal method for obtaining a model of the hardening section of a generalized deformation curve for plastic metal materials, which would be better consistent with the experimental data for each specific material. To this end, equivalent stresses and strains are introduced, which are a generalization of the two “classical” approaches of von Mises and Tresca. The model contains a single parameter p, which is determined by the results of several simple experiments. To find the optimal value of p, statistical estimation of quality and errors is used. Application of the method for plastic materials will allow satisfactory accuracy to describe the generalized deformation curve and to predict the stress-strain state of the material at various ratios of principal stresses. In combination with the methods of taking into account the geometry of structures, the obtained generalized curve can be used to predict the values of real stresses arising by structural elements under load.

  • Keywords generalized deformation curve, strain hardening, equivalent stresses and strains
  • Viewed: 47 Dowloaded: 4
  • Download Article
  • References

     Література

    1.Tian H., Kang D. A study on determining hardening curve for sheet metal. International Journal of Machine Tools and Manufacture. 2003. 43(12), 1253–1257. DOI: 10.1016/s0890-6955(03)00132-9.

    2.Tu S., Ren X., He J., Zhang Z. (2019). Stress–strain curves of metallic materials and post‐necking strain hardening characterization: A review. Fatigue & Fracture of Engineering Materials & Structures. 2019. 43. 3–19. DOI: 10.1111/ffe.13134.

    3.Hradil P., Talja A., Real E., Mirambell E., Rossi B. Generalized multistage mechanical model for non-linear metallic materials. Thin-Walled Structures. 2013. 63, 63–69. DOI:10.1016/j.tws.2012.10.006.

    4.Потапова Л.Б. Механика материалов при сложном напряженном состоянии. Как прогнозируют предельные напряжения? Москва : Издательство Машиностроение – 1, 2005. 244 с.

    5.Трощенко В.Т., Лебедев А.А., Стрижало В.А. Механическое поведение материалов при различ-ных видах нагружения. Киев : Логос, 2000. 570 с.

    6.Real E., Arrayago I., Mirambell E., Westeel R.Comparative study of analytical expressions for the modelling of stainless steel behaviour. Thin-Walled Structures. 2014. 83. 2–11. DOI: 10.1016/j.tws.2014.01.026.

    7.Людвиг П. Основы технологической механики. Расчеты на прочность. Машиностроение. 1970. Вып. 15. С. 130–166.

    8.Law M, Bowie G, Fletcher L, Piper J. Burst pressure and failure strain in pipeline. Journal of Pipeline Integrity. 2004. P. 95–113. URL: https://www.researchgate.net/publication/ 283925162_Burst _pressure_and_failure_strain_in_pipeline.

    9.Proposal and application of a new yield criterion for metal plastic deformation / S.H. Zhang, X.R. Jiang, C.C. Xiang, L. Deng, Y.X. Li. Archive of Applied Mechanics. 2020. 90. 1705–1722. DOI: https://doi.org/10.1007/s00419-020-01691-6.

    10.Шкодзінський О.К., Козбур Г.В., Костишин С.О. Методика узагальнення діаграми деформування ізотропних матеріалів для складного напруженого стану. Вісник Тернопільського державного технічного університету. 2004. 10(1), 25–30.

    11.Лебедев А.А., Ковальчук Б.И., Гигиняк Ф.Ф., Ламашевский В.П. Механические свойства конст-рукционных материалов при сложном напряженном состоянии. Киев : Издательский дом Ин Юре, 2003. 540 с.

    12.Каминский А.А., Бастун В.Н. Деформационное упрочнение и разрушение металлов при переменных процессах нагружения. Киев : Наук.думка, 1985. 168 с.

     

     References

    1. Tian, H., & Kang, D. (2003). A study on determining hardening curve for sheet metal. International Journal of Machine Tools and Manufacture, 43(12), 1253–1257. DOI: 10.1016/s0890-6955(03)00132-9.

    2. Tu, S., Ren, X., He, J., & Zhang, Z. (2019). Stress–strain curves of metallic materials and post‐necking strain hardening characterization: A review. Fatigue & Fracture of Engineering Materials & Structures, 43, 3–19. DOI: 10.1111/ffe.13134

    3. Hradil, P., Talja, A., Real, E., Mirambell, E., & Rossi, B. (2013). Generalized multistage mechanical model for nonlinear metallic materials. Thin-Walled Structures, 63, 63–69. DOI: 10.1016/j.tws.2012.10.006.

    4. Potapova, L.B. (2005) Mehanika materialov pri slozhnom napryazhennom sostoyanii. Kak prognoziruyut predelnyie napryazheniya? Moscow: Izdatelstvo Mashinostroenie – 1.

    5. Troschenko, V.T., Lebedev, A.A., & Strizhalo, V.A. (2000). Mehanicheskoe povedenie materialov pri razlichnyih vidah nagruzheniya. Kiyiv: Logos.

    6. Real, E., Arrayago, I., Mirambell, E., & Westeel, R. (2014). Comparative study of analytical expres-sions for the modelling of stainless steel behaviour. Thin-Walled Structures, 83, 2–11. DOI: 10.1016/j.tws.2014.01.026.

    7. Lyudvig, P. (1970). Osnovyi tehnologicheskoy mehaniki. Raschetyi na prochnost. Mashinostroenie, 15, 130–166.

    8. Law, M, Bowie, G, Fletcher, L, & Piper, J. (2004). Burst pressure and failure strain in pipeline. Journal of Pipeline Integrity, 95–113. URL: https://www.researchgate.net/publication/ 283925162_ Burst_pressure_and_failure_strain_in_pipeline.

    9. Zhang, S. H., Jiang, X. R., Xiang, C. C., Deng, L., & Li, Y. X. (2020). Proposal and application of a new yield criterion for metal plastic deformation. Archive of Applied Mechanics, 90, 1705–1722. DOI: https://doi.org/10.1007/s00419-020-01691-6.

    10. Shkodzinskiy, O.K., Kozbur, G.V., & Kostishin, S.O. (2004). Metodika uzagalnennya diagrami defor-muvannya izotropnih materialiv dlya skladnogo napruzhenogo stanu. Visnik Ternopilskogo derzhavnogo tehnichnogo universitetu, 10(1), 25–30.

    11. Lebedev, A.A., Kovalchuk, B.I., Giginyak, F.F., & Lamashevskiy, V.P. (2003). Mehanicheskie svoystva konstruktsionnyih materialov pri slozhnom napryazhennom sostoyanii. Kiev: Izdatelskiy dom In Yure.

    12. Kaminskiy, A.A., & Bastun, V.N. (1985). Deformatsionnoe uprochnenie i razrushenie metallov pri peremennyih protsessah nagruzheniya. Kiev, Nauk. dumka.

  • Creative Commons License by Author(s)