Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    MODEL FOR CALCULATING THE TEMPERATURE IN THE FUEL RODS OF THE FA-X FUEL ASSEMBLY PRODUCED FOR SUBCRITICAL INSTILLATION AND REACTOR WWR-M

  • Authors

    Chernov I.
    Kushtym А.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2020
    Issue 2(61)
    UDC 621.039.517.5
    DOI 10.15276/opu.2.61.2020.04
    Pages 31-41
  • Abstract

    The TVS-X fuel rod model designed by NSC KIPT as an alternative fuel for subcritical assembly (SCA, KIPT, Kharkov) and research reactor (WWR-M, INR, Kiev) is described. The model is a program that allows calculating the temperature distribution on the radius and height of the fuel element containing both uranium oxide pellets and dispersion fuel based on the UO2+Al composition with different contents of the fuel phase, as well as the different geometric characteristics of the fuel element and the values of the coolant parameters: the temperature at the entrance to the hydraulic channel and the coolant speed. Comparative calculations of temperature distribution during operation are carried out. As a result, it has been shown that for conditions of operation in the SCA (linear power of fuel rod is 2.62 kW/m), the fuel center temperature reaches ~140 °C for UO2 and ~112 °C for the UO2+Al composition. For operating conditions in the WWR-M reactor (linear power of fuel rod is 12.1 kW/m), the fuel center temperature reaches ~626 C for ceramic (UO2) and ~381 °C for metal-ceramic fuel (UO2+Al). The calculations show a significant effect of the type of fuel material (UO2 or UO2+Al dispersion composition) on the fuel center temperature, taking into account the operating conditions in the subcritical assembly and the WWR-M research reactor. The maximum temperature of the cladding for the WWR-M operating conditions was 86.5 C, and the maximum temperature of the cladding for the SCA operating conditions is 27 C, which does not exceed the boiling point (vaporization) under the nominal conditions of their operation. Cross-section area of fuel rods, heat transfer coefficient and temperature distribution of the coolant are calculated. The software module allowed to estimate the temperature distribution of fuel element with different types of nuclear fuel for the conditions of research nuclear assemblies.

  • Keywords fuel rods, model, thermal conductivity, uranium oxide, dispersion fuel, volume fraction of the fuel phase
  • Viewed: 52 Dowloaded: 7
  • Download Article
  • References

    Література

    1. Сорокина Т.В., Азаров С.И., Сорокин Г.А. Сравнение расчетных методов для определения теплофизи-ческого состояния твэла ядерного реактора. Ядерная и радиационная безопасность. 2008. №1. C. 26–31.

    2. Баранов В.Г., Кудряшов Н.А., Хлунов А.В., Чмыхов М.Ф. Стационарное распределение темпера-туры в твэле ВВЭР при высоких выгораниях. Труды IX Российской конференции по реакторному материаловедению. г. Димитровград, ОАО «ГНЦ НИИАР», 14–18 сентября 2009 г., C. 35−38.

    3. Алюшин В.М., Баранов В.Г., Кудряшов Н.А., Хлунов А.В. Численное моделирование распреде-ления температуры в твэле ВВЭР. Атомная энергия. 2010. T. 108, Вып. 3. C. 145–151.

    4. Применение метода конечных разностей для расчета температуры в твэл ядерного реактора / С.И. Азаров, А.А. Авраменко, Г.А. Сорокин. Т.В. Сорокина, А.И. Скицко. Промышленная теп-лотехника. 2008. №2, Т. 30. С. 70–78.

    5. Захаров А.С., Кислицын Б.В., Копоплев К.А. Расчет температурных полей в твэле типа ПИК (СМ) с алюминиевой матрицей. Материала международной научно-технической конференции «Исследовательские реакторы в ХХI веке». Москва, 23–26 июня 2006 г.

    6. Жуков А.И. Тепловой расчет тепловыделяющих элементов. Методические указания по выполне-нию квалификационной работы бакалавра для студентов специальности «Котлы и реакторы», Харьков : НТУ «ХПИ», 2012. 53 с.

    7. Грузинцев Д.С., Щеглов А.С. Численное моделирование теплообмена в ТВС реактора ВВЭР-СКС. Глобальная ядерная безопасность. 2014. №2 (11). С. 59–63.

    8. Розробка і обґрунтування працездатності палива для підкритичної установки, керованої приско-рювачем електронів. / В.С. Красноруцький, М.М. Бєлаш, Й. Гохар, М. Абдуллаєв, А.В. Куштим, С.О. Солдатов. Праці Одеського політехнічного університету. 2017. №3 (53). С. 71–78. DOI: 10.15276/opu.3.53.2017.10.

    9. Analysis of fuel center temperature with the TRANSURANUS Code / A. Shubert, C. Gyori, D. Elen-kov, K. Lassman and J. van de Laar. Paper to be prepared at the International Conference on Nuclear Fuel for Today and Tomorrow – Experience and Outlook, Wurzburg (Germany), 16–19 march, 2003.

    10. Оделевский В.И. Расчет обобщенной проводимости гетерогенных систем. Журнал технической физики. 1951. Т. 21, №6. С. 667–685.

    11. Carson J.K., Lovatt S.J., Tanner D.J., Cleland A.C. Thermal conductivity bounds for isotropic porous materials. International Journal of Heat and Mass Transfer. 2005. 48 (11). Р. 2150–2158.

     

    References

    1. Sorokina, T.V., Azarov, S.I., & Sorokin, G.A. (2008). Comparison of computational methods for determining the thermophysical state of a fuel element of a nuclear reactor. Nuclear and Radiation Safety, 1, 26–31.

    2. Baranov, V.G., Kudryashov, N.A., Hlunov, A.V., & Chmykhov, M.F. (2009). Stationary temperature distribution in a WWER fuel rod at high burnout. Proceedings of the IX Russian Conference on Reactor Materials Science, Dimitrovgrad, SSC RIAR, September 14–18, 2009, p. 35−38.

    3. Alyushin, V.M., Baranov, V.G., Kudryashov, N.A., & Hlunov, A.V. (2010). Numerical simulation of the temperature distribution in a WWER fuel cell. Atomic energy, 108, 3, 145–151.

    4. Azarov, S.I., Avramenko, A.A., Sorokin, G.A., Sorokina, T.V., & Skitsko, A.I. (2008). Application of the method of finite differences to calculate the temperature in the fuel elements of a nuclear reactor. Industrial Heat Engineering, 2, 30, 70–78.

    5. Zakharov, A.S., Kislitsyn, B.V., & Kopoplev, K.A. (2006). Calculation of temperature fields in a PIK-type fuel element (SM) with an aluminum matrix. Materials of the International Scientific and Techni-cal Conference “Research Reactors in the XXI Century”. Moscow, June 23–26.

    6. Zhukov, A.I. (2012). Thermal calculation of fuel elements. Methodical instructions for the implementa-tion of the qualification work of bachelor for students of the specialty “Boilers and reactors”, Kharkov: NTU “KPI”, 53 p.

    7. Gruzintsev, D.S., & Shcheglov, A.S. (2014). Numerical simulated heat transfer in the IVS of the WWER-SCS reactor. Global Nuclear Safety, 2 (11), 59–63.

    8. Krasnorutsky, V.S., Belash, M.M., Gokhar, J., Abdullaev, A.M., Kushtym, A.V., & Soldatov, S.O. (2017). Development and design-basis justification of fuel serviceability for the subcritical assembly driven by an electron accelerator. Proceedings of Odessa Polytechnic University, 3 (53), 71–78. DOI: 10.15276/opu.3.53.2017.10.

    9. Shubert, А., Gyori, C., Elenkov, D., Lassman, K., & J. van de Laar. (2003). Analysis of fuel center tem-perature with the TRANSURANUS Code. Paper to be prepared at the International Conference on Nuclear Fuel for Today and Tomorrow – Experience and Outlook, Wurzburg (Germany), 16–19 march.

    10. Odelevsky, V.I. (1951). Calculation of the generalized conductivity of heterogeneous systems. Journal of technical physics, 21, 6, 667–685.

    11. Carson, J.K., Lovatt, S.J., Tanner, D.J., & Cleland, A.C. (2005). Thermal conductivity bounds for iso-tropic poro-us materials. International Journal of Heat and Mass Transfer, 48 (11), 2150–2158.

  • Creative Commons License by Author(s)