Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    EFFECT OF PH ON THE STABILITY OF COORDINATION COMPOUNDS OF CO(III) WITH DIAMINOETHANOL LIGANDS IN NON-AQUEOUS SOLUTIONS

  • Authors

    Vlasenko N.
    Potaskalov V.
    Andriiko A.
    Zulfigarov A.
    Kuzevanova, I.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2020
    Issue 2(61)
    UDC 546.733:546.742:546.06
    DOI 10.15276/opu.2.61.2020.14
    Pages 119-127
  • Abstract

    Inner complex compound of cobalt(III) with diaminoethanol, [Co(DetmHdetm)], and polynuclear complex compound 2Co-Ni with diaminoethanol, [Ni(CoDetmHdetm)2](NO3)2, were synthesized.Stabilities of the obtained compounds were investigated in non-aqueous (dimethylformamide) solutions at different values of pH (from acid to alkaline). Methods of potentiometric titration and electron absorption spectra were used to determine the range of pH values where the compounds do not decompose. As a result of these studies, we found that at the upper value of pH=7, the coordination surrounding of the metals (Co(III), Ni(II)) does not change. When the pH value becomes lower than 7 (with adding HCl acide), the inner complex of Co(III) begins to decompose. The ligand H2detm is replaced by Cl- and partial protonization of diethanolamine occurs. Also, transformation of N,Ncis isomer of inner complex compound of cobalt(III) to N,N-trans isomer takes place, thus reducing the symmetry of the complex. As for the polynuclear complex compound 2Co-Ni, when pH value becomes lower than 7, molecules of solvent begin to react with the products of partially destroyed complex. As a result, new complex compound is formed with the increase of coordination number of nickel(II) from 4 to 6. However, in alkaline solutions where pH values are up to 10, the heterometal complex compound of 2Co-Ni remains stable. Only partial hydrolysis of the solvent occurs in these conditions. The schemes of transformations of [Co(DetmHdetm)] and [Ni(CoDetmHdetm)2](NO3)2 occuring in non-aqueous (dimethylformamide) solutions at different values of pH (from acid to alkaline) are presented in the paper. The results of this study can be used for the preparation of precursor solution for the technology of catalytic materials production. Evidently, the range of pH from 7 to 10 must be maintained in order to avoid the contamination of the final products by the decomposed wastes of complexes and solvent.

  • Keywords diaminoethanol, Cobalt(III) inner complexes, Cobalt(III)-Nickel(II) heterometal complexes, dimethylformamide solutions, pH range of stability
  • Viewed: 56 Dowloaded: 7
  • Download Article
  • References

    Література

     1. Zhigang Wang, Zhoufeng Bian, Nikita Dewangan, Jeff Xu, Sibudjing Kawi. High-performance catalytic perovskite hollow fiber membrane reactor for oxidative propane dehydrogenation. Journal of Membrane Science. 2019. V.578. P. 36-42. DOI: 10.1016/j.memsci.2019.02.012.

    2. Sandeep Badoga, Ajay K. Dalai, John Adjaye, Yongfeng Hu. Combined Effects of EDTA and Heteroatoms (Ti, Zr, and Al) on Catalytic Activity of SBA-15 Supported NiMo Catalyst for Hydrotreating of Heavy. Ind. Eng. Chem. Res. 2014. V. 53. P. 2137−2156. DOI: 10.1016/S2095-4956(14)60132-7.

    3. Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane /José Santander, Eduardo López, Alejandra Diez, Mariana Dennehy, Marisa Pedernera, Gabriela Tonetto. Chemical Engineering Journal. 2014. V. 255. P. 185-194. DOI: 10.1016/j.cej.2014.06.048.

    4. Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane / Zhanyong Li, Aaron W. Peters, Ana E. Platero-Prats, Jian Liu, ChungWei Kung, Hyunho Noh, Matthew R. DeStefano, Neil M. Schweitzer, Karena W. Chapman, Joseph T.Hupp, Omar K. Farha. Journal of the American Chemical Society. 2017. V. 139(42). P. 15251–15258.DOI: 10.1021/jacs.7b09365.

    5. Iminodiacetate complex of cobalt(II) - Structure, physicochemical characteristics, biological properties and catalytic activity for 2-chloro-2-propen-1-ol oligomerization / Drzezdzon J., Malinowski J., Sikorski A., Gawdzik B., Rybinski P., Chmurzynski L., Jacewicz D. Polyhedron. 2020. Jan 1. T. 175.

    6. Asymmetrically PNP-chelate diiron ethanedithiolate complexes Fe-2(mu-edt) (CO)(4){kappa(2)-(Ph2P)(2)NR} as diiron subsite models of FeFe -hydrogenases: Structural and electrocatalytic investigation / Li J.-R., Hu M.-Y., Zhao P.-H., Tian W.-J., Xu T.-T., Li Y.-L. Inorganica Chimica Acta. 2020.May 24. T. 505.

    7. Li M.-C., Ding D., Lin K.-Y. A., Kwon E. Cobalt-based coordination polymers as heterogeneous catalysts for activating Oxone to degrade organic contaminants in water: A comparative study. Separation and Purification Technology. 2020. Apr 1. T. 236.

    8. Fabrication, photoelectrochemical and electrocatalytic activity of 1D linear Co(II) and Fe(III) TPPbased coordination compounds / Li X., Zhang Y., Wang W., Meng J., Li K., Peng Z., Wan J. International Journal of Hydrogen Energy. 2020. Mar 20. T. 45, № 16. P. 9328–9341.

    9. Synthesis and Catalytic Properties of Co2+/Cd2+ Composite Materials / Liu D.-N., Wang C.-J., Xiao Y.-M., Liu C., Luo D., Zhu Z.-X., Chen S., Wang Y.-Y. Chinese Journal of Inorganic Chemistry. 2020.Dec. T. 35, № 12. P. 2193–2199.

    10. Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co-III Catalysis. Martinez de Salinas S., Sanjose-Orduna J., Odena C., Barranco S., Benet-Buchholz J., PerezTemprano M.H. Angewandte Chemie-International Edition. 2020. Apr 6. T. 59, № 15. P. 6239–6243.

    11. Synthesis, catalytic, spectroscopic, fluorescent and coordination properties of dicyanophenoxysubstituted phthalocyaninates of d-metals / Vashurin A., Erzunov D., Kazaryan K., Tonkova S., Tikhomirova T., Filippova A., Koffman O. Dyes and Pigments. 2020. Mar. T. 174.

    12. Discharge-ionization of hydrogen on modified carbon nanotube electrodes / A.A. Andriiko, N.I. Globa,A.O. Zul'figarov, V.D. Prisiazhnyi, Ju.I. Sementsov, V.A. Potaskalov. International Journal of Hydrogen Energy. 2013. V. 38(14). P. 5983–5988. DOI: 10.1016/j.ijhydene.2013.02.088.

    13. Zulfigarov А.О., Аndriiko О.О., Potaskalov V.А. Syntesis route for preparation of precursor solutions.Promising materials and processes in applied electrochemistry : Monograph. K. : 2017. P. 235–240.

    14. Зульфігаров А.О., Підгорний А.В., Кузеванова І.С., Андрійко А.А. Утворення та стійкість гетерометальних комплексів Co(III)-Ni(II) з аміноалкоголями в розчинах метанолу та їх використання в якості попередників для приготування електрокаталізаторів. Нові матеріали,сполуки та застосування. 2019. V.3. № 1. С. 29–37.

    15. Вплив рН на стійкість гетерометальних комплексних сполук кобальту (III) з моноаміноетанолом у спиртових розчинах / І.С. Кузеванова, А.О. Зульфігаров, В.А. Потаскалов, А.А. Андрійко, Н.Є.Власенко. Наукові новини КПІ. 2019. № 3. P. 87–93. 

    16. Коттон Ф., Уилкинсон Дж. (1969). Современная неорганическая химия. Часть 3. Москва : Мир,1969. 592 с. 

     

    References

    1. Zhigang Wang, Zhoufeng Bian, Nikita Dewangan, Jeff Xu, & Sibudjing Kawi. (2019). Highperformance catalytic perovskite hollow fiber membrane reactor for oxidative propane dehydrogenation. Journal of Membrane Science, 578, 36–42. DOI: 10.1016/j.memsci.2019.02.012.

    2. Sandeep Badoga, Ajay K. Dalai, John Adjaye, & Yongfeng Hu. (2014). Combined Effects of EDTA and Heteroatoms (Ti, Zr, and Al) on Catalytic Activity of SBA-15 Supported NiMo Catalyst for Hydrotreating of Heavy. Ind. Eng. Chem. Res., 53, 2137−2156. DOI: 10.1016/S2095-4956(14)60132-7.

    3. José Santander, Eduardo López, Alejandra Diez, Mariana Dennehy, Marisa Pedernera, & Gabriela Tonetto. (2014). Ni-Nb mixed oxides: One-pot synthesis and catalytic activity for oxidative dehydrogenation of ethane. Chemical Engineering Journal, 255, 185-194. DOI: 10.1016/j.cej.2014.06.048.

    4. Zhanyong Li, Aaron W. Peters, Ana E. Platero-Prats, Jian Liu, Chung-Wei Kung, Hyunho Noh, Matthew R. DeStefano, Neil M. Schweitzer, Karena W. Chapman, Joseph T. Hupp, & Omar K. Farha.(2017). Fine-Tuning the Activity of Metal-Organic Framework-Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane. Journal of the American Chemical Society, 139(42), 15251–15258. DOI: 10.1021/jacs.7b09365.

    5. Drzezdzon, J., Malinowski, J., Sikorski, A., Gawdzik, B., Rybinski, P., Chmurzynski, L., & Jacewicz, D. (2020). Iminodiacetate complex of cobalt(II) - Structure, physicochemical characteristics, biological properties and catalytic activity for 2-chloro-2-propen-1-ol oligomerization. Polyhedron, Jan 1, 175.

    6. Li, J.-R., Hu, M.-Y., Zhao, P.-H., Tian, W.-J., Xu, T.-T., & Li, Y.-L. (2020). Asymmetrically PNPchelate diiron ethanedithiolate complexes Fe-2(mu-edt) (CO)(4){kappa(2)-(Ph2P)(2)NR} as diiron subsite models of FeFe -hydrogenases: Structural and electrocatalytic investigation. Inorganica Chimica Acta, May 24, 505.

    7. Li, M.-C., Ding, D., Lin, K.-Y. A., & Kwon, E. (2020). Cobalt-based coordination polymers as heterogeneous catalysts for activating Oxone to degrade organic contaminants in water: A comparative study. Separation and Purification Technology, Apr 1, 236.

    8. Li, X., Zhang, Y., Wang, W., Meng, J., Li, K., Peng, Z., & Wan, J. (2020). Fabrication, photoelectrochemical and electrocatalytic activity of 1D linear Co(II) and Fe(III) TPP-based coordination compounds. International Journal of Hydrogen Energy, 45, 16, 9328–9341.

    9. Liu, D.-N., Wang, C.-J., Xiao, Y.-M., Liu, C., Luo, D., Zhu, Z.-X., Chen, S., & Wang, Y.-Y. (2020). Synthesis and Catalytic Properties of Co2+/Cd2+ Composite Materials. Chinese Journal of Inorganic Chemistry, 12, 2193–2199.

    10. Martinez de Salinas, S., Sanjose-Orduna, J., Odena, C., Barranco, S., Benet-Buchholz, J., & PerezTemprano, M.H. (2020). Weakly Coordinated Cobaltacycles: Trapping Catalytically Competent Intermediates in Cp*Co-III Catalysis. Angewandte Chemie-International Edition, 59, 15, 6239–6243.

    11. Vashurin, A., Erzunov, D., Kazaryan, K., Tonkova, S., Tikhomirova, T., Filippova, A., & Koffman, O. (2020). Synthesis, catalytic, spectroscopic, fluorescent and coordination properties of dicyanophenoxysubstituted phthalocyaninates of d-metals. Dyes and Pigments, Mar, 174.

    12. Andriiko, A.A., Globa, N.I., Zul'figarov, A.O., Prisiazhnyi, V.D., Sementsov, Ju.I., & Potaskalov, V.A. (2013). Discharge-ionization of hydrogen on modified carbon nanotube electrodes. International Journal of Hydrogen Energy, 38(14), 5983–5988. DOI: 10.1016/j.ijhydene.2013.02.088.

    13. Zulfigarov, А.О., Аndriiko, О.О., & Potaskalov, V.А. (2017). Syntesis route for preparation of precursor solutions. Promising materials and processes in applied electrochemistry, Monograph , Kyiv: 235–240.

    14. Zulfigarov, A.O., Pidgornui, A.V., Kuzevanova, I.S., & Andriiko, A.A. (2019). Formation and stability of heterometal complexes Co(III)-Ni(II) with aminoalcohols in methanol solutions and their use as precursors for preparation of electrocatalysts. New Materials, Compounds and Applications, 3, 1, 29–37.

    15. Зульфігаров А.О., Підгорний А.В., Кузеванова І.С., Андрійко А.А. Утворення та стійкість гетерометальних комплексів Co(III)-Ni(II) з аміноалкоголями в розчинах метанолу та їх використання в якості попередників для приготування електрокаталізаторів. Нові матеріали, сполуки та застосування. 2019. V.3. № 1. С. 29–37.

    16. Вплив рН на стійкість гетерометальних комплексних сполук кобальту (III) з моноаміноетанолом у спиртових розчинах / І.С. Кузеванова, А.О. Зульфігаров, В.А. Потаскалов, А.А. Андрійко, Н.Є. Власенко. Наукові новини КПІ. 2019. № 3. P. 87–93.

    17. Коттон Ф., Уилкинсон Дж. (1969). Современная неорганическая химия. Часть 3. Москва : Мир, 1969. 592 с.

     
     
  • Creative Commons License by Author(s)