Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    EXPERIMENTAL INVESTIGATION OF LOAD-BEARING CAPACITY AND DEFLECTIONS OF FULL-SCALE GLUED LAMINATED TIMBER BEAMS

  • Authors

    Shekhorkina S.
    Shliakhov K.
    Sopilniak А.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2020
    Issue 2(61)
    UDC 620.17 : 624.011.1
    DOI 10.15276/opu.2.61.2020.01
    Pages 5-11
  • Abstract

    With the transition to the design of timber structures in accordance with European standards, problems arise in assessment of the load-bearing capacity of glued timber structures that are caused by insufficient amount of data about the physical, mechanical and deformation properties of glued timber, which is produced in Ukraine. The aim of the work was to determine the load bearing capacity in bending and deflection of a glued timber beam under the action of a concentrated load in the middle of the span. Two glued laminated timber beams were used in the experiment. Both beams were made using lumber from pine wood and a moisture-curing onecomponent polyurethane adhesive Kleiberit PUR 510 FiberBond. The beams have the dimensions of the cross-section: width of 120 mm and height of 180 mm. The length of the beams was 9880 mm. Each beam consisted of 9 layers of 20 mm thick lamellas glued together. Considering the absence of the data on the strength class of the beam material, the theoretical load bearing capacity and deflection were determined according to the characteristics of the GL24h class (minimum strength class), and amounted to 722 kgf and 19.1 cm, respectively. As a result of the tests, the failure load and the deflection of the beams were determined, and the dependences of the deflection on the load were obtained. The actual deflection of the beams determined was 251 mm and 275 mm, which is 1.31 and 1.44 times higher than the predicted deflection. Accordingly, the failure load determined experimentally is 1.96 and 2.03 times higher than the theoretical value. During the tests, the features of the deformation and the nature of the destruction of the beams were investigated. Wherein, the determining factor was the presence of defects in timber and lamellas joints along the length in the most stressed layers. Based on the data obtained, recommendations on manufacturing aimed at the increasing the bending strength of glued laminated timber beams are given. The results obtained will be further used in the development of structural solutions for hybrid timber-concrete floors.

  • Keywords glued laminated timber beam, bending, failure load, deflection
  • Viewed: 91 Dowloaded: 4
  • Download Article
  • References

    Література

     

    1. ДБН В.2.6-161:2017. Дерев’яні конструкції. Основні положення [чинні від 2018-01-02]. Вид. офіц. Київ : Мінрегіон України, 2017. 111 с. (Державні будівельні норми України).

    2. Кліменко В.З. Ефективний конструкційний матеріал – клеєна деревина. Будівництво України. 2009. Вип. 9/10. С. 16–20.

    3. Калугин А.В. Клееные деревянные конструкции в современном строительстве. Промышленное и гражданское строительство. 2011. Вип. 7(2). С. 32–37.

    4. Турковский С.Б., Погорельцев А.А., Преображенская И.П. Клееные деревянные конструкции с узлами на вклеенных стержнях в современном строительстве (система ЦНИИСК). М. : РИФ «СТРОЙМАТЕРИАЛЫ», 2013. 308 c. URL: https://lesprominform.ru/jarticles.html?id=3581 (дата звернення: 20.03.2020).

    5. Kuzman M., Oblak L., Vratuša S. Glued Laminated Timber in Architecture. Drvna industrija. 2010. Vol. 61. URL: https://www.researchgate.net/publication/46401414 _Glued_Laminated_Timber_in_ Architecture (дата звернення: 20.03.2020).

    6. Harris R. Engineered timber structures in the UK. 3rd Forum International Bois Construction, 2013 pp. 1–12. URL: http://www.forum-boisconstruction.com /conferences/FBC_2013_Harris.pdf (дата звернення: 20.03.2020).

    7. Гомон С.С., Гомон С.С., Зінчук А.В. Дослідження модифікованої силором клеєної деревини на стиск вздовж волокон. Вісті Донецького гірничого інституту. 2017. № 1. С. 134–138. URL: http://nbuv.gov.ua/UJRN/Vdgi_2017_1_21 (дата звернення: 20.03.2020).

    8. Башинський О.І., Боднарчук Т.Б., Пелешко М.З. Несуча здатність та вогнестійкість дерев’яних балок армованих зовнішньою стрічковою арматурою. Вісник Львівського державного університету безпеки життєдіяльності. 2014. №9. С. 184–189. URL: http://nbuv.gov.ua/UJRN/ Vldubzh_2014_9_27 (дата звернення: 20.03.2020).

    9. Експериментальне дослідження роботи дощатоклеєних балок, армованих металевою та неметалевою арматурою. / Б.Г. Демчина, Т.Й. Бляхар, А.Р. Кравз, Д.О. Орешкин, М.І. Сурмай. Вісник Національного університету "Львівська політехніка". Теорія і практика будівництва. 2011. № 697. С. 87–92. URL: http://ena.lp.edu.ua:8080/handle/ntb/10395 (дата звернення: 20.03.2020).

    10. Uzel M., Togay A., Anil Ö., Söğütlü C. Experimental investigation of flexural behavior of glulam beams reinforced with different bonding surface materials. Construction and Building Materials. 2018. 158. 149–163. DOI:10.1016/j.conbuildmat.2017.10.033.

    11. Kandler G., Lukacevic M. Füssl J. Experimental study on glued laminated timber beams with wellknown knot morphology. Eur. J. Wood Prod. 2018. 76. 1435–1452. DOI: https://doi.org/10.1007/ s00107-018-1328-6.

    12. ДСТУ EN 408:2003. Лісоматеріали конструкційні. Конструкційна та клеєна шарувата деревина. Визначення деяких фізичних та механічних властивостей [чинні від 01.07.2009]. Вид. офіц. Київ : Мінрегіон України, 2009. URL: http://online.budstandart.com/ua/catalog/doc-page.html?id_ doc=66659 (дата звернення: 20.03.2020).

     

    References

     

    1. DBN В.2.6-161:2017. Timber structures. General aspects. (2017). Kyiv : Ministry of Regional Construction of Ukraine, 111 p.

    2. Klimenko, V.Z. (2009). Effective structural material – glued timber. Budivnitstvo Ukrainy : Naukovovyrobnychiy jurnal, 9/10, 16–20.

    3. Kalugin, A.V. (2011). Glued timber structures in modern construction. Promyshlennoye s grazhdanskoye stroitelstvo, 7(2), 32–37.

    4. Turkovskiy, S.B., Pogorelcev, A.A., & Preobrajenkaya, I.P. (2013). Glued timber structures with joints with glued-in rods in modern construction (system of CNIISK). Moscow: RIF «Stroymaterialy». URL: https://lesprominform.ru/jarticles.html?id=3581.

    5. Kuzman, M., Oblak, L., & Vratuša, S. (2010). Glued Laminated Timber in Architecture. Drvna industrija, 61(3), 197–204. URL: https://hrcak.srce.hr/file/88694.

    6. Harris, R. (2013). Engineered timber structures in the UK. 3rd Forum International Bois Construction, 1–12. Retrieved from: http://www.forum-boisconstruction.com /conferences/FBC_2013_Harris.pdf.

    7. Gomon, S.S., Gomon, S.S., & Zynchuk, А.В. (2017). Investigation of silage modified glued timber in compression along fibers. Journal of Donetsk Mining Institute, 1, 134–138.

    8. Bashynskyi, О.І., Bondarchuk, Т.B., & Peleshko, M.Z. (2014). Bearing capacity and fire resistance of timber beams reinforced with external tape reinforcement. Bulletin of Lviv State University of Life Safety, 9, 184–189.

    9. Demchyna, B.G., Blyakhar, T.Y., Kravz, A.R., Oreshkin, D.O., & Surmay, M.I. (2011). Experimental study of the work of laminated beams reinforced with metal and non-metallic reinforcement. Bulletin of Lviv Polytechnic National University, Construction theory and practice, 697, 87–92. Retrieved from: http://ena.lp.edu.ua:8080/handle/ntb/10395.

    10. Uzel, M., Togay, A., Anil, Ö., & Söğütlü, C. (2018). Experimental investigation of flexural behavior of glulam beams reinforced with different bonding surface materials. Construction and Building Materials, 158, 149–163. DOI:10.1016/j.conbuildmat.2017.10.033.

    11. Kandler, G., Lukacevic, M. & Füssl, J. (2018). Experimental study on glued laminated timber beams with well-known knot morphology. Eur. J. Wood Prod. 76, 1435–1452. DOI: https://doi.org/10.1007/ s00107-018-1328-6.

    12. DSTU EN 408:2003. Timber structures. Structural timber and glued laminated timber – Determination of some physical and mechanical properties. (2009). Kyiv: Minregion Ukrainy.

  • Creative Commons License by Author(s)