Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    STUDY WAYS OF MODERN DIAGNOSIS OF INTER-TURN SHORT CIRCUITS IN STATOR WINDINGS OF ASYNCHRONOUS ENGINES WITH THE USE OF MODELING

  • Authors

    Gubarevych O.
    Goolak S.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2020
    Issue 1(60)
    UDC 621.313.333.2
    DOI 10.15276/opu.1.60.2020.08
    Pages 68-81
  • Abstract

    Increasing the reliability of asynchronous electric motors during operation is due to the continuous improvement of existing and development of new diagnostic methods, which is possible on the basis of the results of studies of processes occurring in various engine defects. The most time-consuming and complex is the ability to diagnose and differentiate the inter-turn short circuit of the stator winding. Carrying out studies of processes occurring during inter-turn short circuits and their implementation in diagnostic equipment, taking into account modern technologies, contributes to solve the problems of developing and improving existing methods for diagnosing asynchronous motors. The aim of the work is to conduct research on modern types of diagnostics of the inter-turn short circuit of the stator winding with the analysis of the most significant indicators to achieve an adequate assessment of the recognition of the state of the electric motor and to develop recommendations for further improvement of diagnostic equipment methods. In this work, we studied electromechanical processes in an induction motor using mathematical modeling for an engine with an intact stator and in the presence of inter-turn short circuits of various degrees, comprising 10 % and 20 % reduction in stator winding resistance. The AIR 11kW engine was adopted as the base model for research. Using the model for the engine under study, the hodograph of the Park vector was constructed for the stator short circuit mode without defects and when the complex resistance changes to 80 % because of the inter-turn circuit in the short circuit mode and in the idle mode for a period from 0 to Т=2π/ω. It was established that each of the parameters of the manifestation of the inter-turn circuit, which is considered as determining in various methods, has a partial information content, insufficient for deciding on the state of the motor winding and predicting the time of its trouble-free operation. To increase the reliability of diagnosing and differentiating the degree of inter-turn faults in the stator, a systematic approach based on the analysis of factors using electric, magnetic, thermal and vibration parameters with mandatory implementation is necessary decision theory.

  • Keywords asynchronous electric motor, inter-turn short circuits, stator winding, diagnostics, reliability increase, simulation modeling, vibration, Park vector
  • Viewed: 84 Dowloaded: 1
  • Download Article
  • References

    Література

    1. Петухов В.С., Соколов В.А. Диагностика состояния электродвигателей. Метод спектрального анализа потребляемого тока. Новости электротехники. Санкт-Петербург : ЗАО Новости Элек- тротехники, 2005. № 1. 63 с.

    2. Чернышев В.А., Сафроненков Ю.Ф., Гордиловский А.А., Чернов В.А. Современные подходы к оценке состояния изоляции электрических машин высокого напряжения. Электротехника. Моск- ва : ЗАО Знак, 2008. № 4. 92 с.

    3. Сидельников Л.Г., Афанасьев Д.О. Обзор методов контроля технического состояния асинхронных двигателей в процессе эксплуатации. Вестник Пермского национального исследовательского по- литехнического университета. Геология. Нефтегазовое и горное дело. 2013. № 7. С. 127–137.

    4. Хомутов С.О. Комплекс мероприятий по повышению надежности электрических двигателей в сельском хозяйстве на основе достоверных методов диагностики и эффективных технологий восстановления изоляции. Ползуновский вестник. 2010. № 4/2. С. 70–76.

    5. Губаревич О.В., Голубєва С.М. Аналіз методів діагностики технічного стану ізоляції асинхрон- них двигунів. Наукові праці Донецького національного технічного університету. Електротех- ніка і енергетика. 2019. №1(21), С. 55–63.

    6. Воробьев Н.П., Воробьева С.Н., Суханкин Г.В., Герцен Н.Т. Методы и приборы диагностирова- ния изоляции асинхронных двигателей. Ползуновский вестник. 2011. № 2/2. С. 261–269.

    7. Худий Є.Г., Пельтек І.І. Сучасні методи діагностики стану ізоляції електричних машин. Вестник НТУ «ХПИ»: Проблеми автоматизованого електроприводу. Теорія і практика. 2010. № 28 С. 549 550. ISSN 2079-8024.

    8. Титко А.И., Андриенко В.М., Худяков А. В., Гуторова М.С. Новые методы диагностики асинх- ронных двигателей. Праці Інституту електродинаміки Національної академії наук України. 2014. Вип. 37. С. 58−61.

    9. Диагностика и прогнозирование состояния асинхронных двигателей на основе использования параметров их внешнего электромагнитного поля / А.Ю. Алексеенко, О.В. Бродский, В.Н. Веде- неев, В.Г. Тонких, С.О. Хомутов. Вестник Алтай. гос. техн. ун-та им. И.И. Ползунова. 2006. № 2. С. 79–83.

    10. Губаревич О.В., Гулак С.О., Голубєва С.М. Комплексний підхід до діагностування асинхронних електродвигунів водного транспорту. Новітні технології. 2019. Вип. 2(9). C.48–61.

    11. Руссов В.А. Диагностика дефектов вращающегося оборудования по вибрационным сигналам. Пермь : 2012. 252 с.

    12. Губаревич О.В., Козынко А.С. Природа вибрации и современные методы вибродиагностики элек- трических машин. Вісник Східноукраїнського нац. ун-ту ім. В. Даля. 2017, №3 (233). C.53–58.

    13. Гуторова М.С. Електромагнітний спосіб діагностики виткових замикань статорної обмотки АД. Праці Ін-ту електродинаміки НАН України. 2008. № 20. С. 42.

    14. Вовк О.Ю., Квітка С.О., Яковлєв В.Ф. Аналітичне порівняння методів визначення усталеного перевищення температури обмоток статора асинхронного електродвигуна. Вісник Сумського національного аграрного університету. Механізація та автоматизація виробничих процесів. 2011. № 8(23). С.114–116.

    15. Грабко В.В., Грабко В.В. Математическая модель для диагностирования состояния изоляции ра- ботающей мощной электрической машины по ее тепловому портрету. Наукові праці ВНТУ. 2008. № 1. 178 с.

    16. Петухов В. Диагностика электродвигателей. Спектральный анализ модулей векторов Парка тока и напряжения. Новости электротехники. 2008. № 1 (50). С. 33–37.

    17. Thomson W.T. A Review of On-Line Condition Monitoring Techniques for Three-Phase Squirrel-Cage Induction Motors – Past, Present and Future. Keynote address at IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Gijon, Spain, Sept. 1999, pp 3–18.

    18. Pustovetov M.Yu. A mathematical model of the three-phase induction motor in three-phase stator reference frame describing electromagnetic and electromechanical processes. IEEE Conference 2016 Dy- namics of Systems, Mechanisms and Machines (Omsk, 2016).

    19. Gyftakis K.N., Cardoso A. J. M. A new space vector approach to detect stator faults in induction motors. 2017 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). IEEE. 2017. P. 232–237.

    20. Goolak S., Gubarevych О., Yermolenko E, Slobodyanyuk M, Gorobchenko O. Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies. 2020. 2/2 (104). 25–34. DOI: https://doi.org/10.15587/1729-4061.2020.199559.

    21. Pustovetov M.Yu. Approach to Computer Implementation of Mathematical Model of 3-Phase Induction Motor. IOP Conf. Series: Materials Science and Engineering 327 (2018) 022085. DOI:10.1088/1757- 899X/327/2/022085.

    22. Goolak, S.: Methodological recommendations for the application of the model of physical processes in three-phase asynchronous motor. Collection of scientific works of the State economic-technological university of transport. Transport Systems and Technologies. 2018. 1(32). P. 4–13.

    23. Abdullah, Afrah Thamer, Amer Mejbel Ali. Estimation of Stator Winding Temperature of a Three- Phase Induction Motor. IRAQI JOURNAL OF COMPUTERS, COMMUNICATION AND CONTROL & SYSTEMS ENGINEERING. 2019. 19, 2. P. 9–17.

    24. Mao, Xiaoming, and Junxian Chen. A Fast Method to Compute the Dynamic Response of Induction Motor Loads Considering the Negative-Sequence Components in Stability Studies. Energies. 2019. 12. P. 1802–1818.

    References

    1. Petukhov, V.S., & Sokolov, V.A. (2005). Diagnostics of the condition of electric motors. Method of spectral analysis of current consumption. Novosti elektrotekhniki, Sankt-Peterburg: ZAO Novosti El- ektrotekhniki, 1.

    2. Chernyshev, V.A., Safronenkov, YU.F., Gordilovskiy, A.A., & Chernov, V.A. (2008), Modern ap- proaches to assessing the insulation state of high-voltage electric machines. Elektrotekhnika, Moscow: ZAO Znak, 4.

    3. Sidel'nikov, L.G., & Afanas'yev, D.O. (2013). A review of methods for monitoring the technical condition of induction motors during operation. Vestnik Permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoye i gornoye delo, 7, 127–137.

    4. Khomutov, S.O. (2010). A set of measures to improve the reliability of electric motors in agriculture based on reliable diagnostic methods and effective insulation recovery technologies. Polzunovskiy vestnik. 4/2, 70–76.

    5. Gubarevych, О.V. & Golubyeva, S.М. (2019). Analysis of methods for diagnosing a technical camp of asynchronous motors. Science and Technology of Donetsk National Technical University. Electrotech- nics and energy, 1(21), 55-63.

    6. Vorob'yev, N.P., Vorob'yeva, S.N., Sukhankin, G.V., & Gertsen, N.T. (2011), Methods and instruments for diagnosing insulation of asynchronous motors. Polzunovskiy vestnik, 2, 2, 261–269.

    7. Khudyy, YE.H., & Pelʹtek, I.I. (2010). Modern methods of diagnostics of the state of insulation of electric machines. Problemy avtomatyzovanoho elektropryvodu. Teoriya i praktyka, 28, 549-550.

    8. Titko, A.I., Andriyenko, V.M,. Khudyakov, A.V, & Gutorova, M.S. (2014). New diagnostic methods for induction motors. Pratsi Instytutu elektrodynamiky Natsionalʹnoyi akademiyi nauk Ukrayiny, 37, 58−61.

    9. Alekseyenko, A.YU., Brodskiy, O.V., Vedeneyev, V.N., Tonkikh, V.G., & Khomutov, S.O. (2006). Di- agnosis and prediction of the status of induction motors based on the use of the parameters of their external electromagnetic field. Vestnik Altay. gos. tekhn. un-ta im. I.I. Polzunova, 2, 79–83.

    10. Gubarevych, O.V., Goolak, S.O. & Golubyeva, S.М. (2019). A comprehensive approach to diagnosing asynchronous electric motors of water transport. New technology, 2 (9), 48–61.

    11. Russov, V.A. (2012). Diagnostika defektov vrashchayushchegosya oborudovaniya po vibratsionnym signalam. Perm: Russia.

    12. Gubarevych, O.V. & Kozynko, A.S. (2017). The nature of vibration and modern methods of vibrodiag- nosis of electric machines. Visnyk Skhidnoukrayinsʹkoho nats. un-tu im. V. Dalya, 3, 233, 53–58.

    13. Gutorova, M.S. (2008). The electromagnetic method of diagnostics of winding of a circuit of a stator windings AM. Proceedings of the Institute of Electrodynamics of NAS of Ukraine, 20.

    14. Vovk, O. YU., Kvitka, S.O., & Yakovlyev, V.F. (2011). Analytical comparison of methods for deter- mining the stationary excess of the stator windings of an induction motor. Visnyk Sumskoho natsionalnoho ahrarnoho universytetu. “Mechanization and automation of production processes”, 8 (23), 114–116.

    15. Grabko, V.V., & Grabko, V.V. (2008). A mathematical model for diagnosing the insulation state of a working powerful electric machine according to its thermal portrait. Naukovн pratsн VNTU, 1.

    16. Petukhov, V.S. (2008). Diagnostics of electric motors. Spectral analysis of modules of vectors of the Park of current and voltage. Part 1, Novosti elektrotekhniki, 1 (50), 33–37.

    17. Thomson, W.T. (1999). A Review of On-Line Condition Monitoring Techniques for Three-Phase Squirrel-Cage Induction Motors – Past, Present and Future. Keynote address at IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives, Gijon, Spain, Sept. 1999, pp. 3–18.

    18. Pustovetov, M.Yu. (2016). A mathematical model of the three-phase induction motor in three-phase stator reference frame describing electromagnetic and electromechanical processes. IEEE Conference 2016 Dynamics of Systems, Mechanisms and Machines, Omsk, Russia.

    19. Gyftakis, K.N., & Cardoso, A.J.M. (2017). A new space vector approach to detect stator faults in induction motors. IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD). IEEE, pp. 232–237.

    20. Goolak, S., Gubarevych, О., Yermolenko, E., Slobodyanyuk, M., & Gorobchenko, O. (2020). Mathe- matical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technol- ogies, 2/2 (104). 25–34. DOI: https://doi.org/10.15587/1729-4061.2020.199559.

    21. Pustovetov, M.Yu. (2018). Approach to Computer Implementation of Mathematical Model of 3-Phase Induction Motor. IOP Conf. Series: Materials Science and Engineering, 327, 022085. DOI: 10.1088/1757-899X/327/2/022085.

    22. Goolak, S. (2018). Methodological recommendations for the application of the model of physical pro- cesses in three-phase asynchronous motor. Collection of scientific works of the State economic- technological university of transport. Series: Transport Systems and Technologies, 1 (32), 4–13.

    23. Abdullah Afrah Thamer, & Amer Mejbel Ali. (2019). Estimation of Stator Winding Temperature of a Three-Phase Induction Motor. IRAQI JOURNAL OF COMPUTERS, COMMUNICATION AND CON- TROL & SYSTEMS ENGINEERING, 19, 2, 9–17.

    24. Mao Xiaoming, & Junxian Chen (2019). A Fast Method to Compute the Dynamic Response of Induction Motor Loads Considering the Negative-Sequence Components in Stability Studies. Energies, 12, 1802–1818.

  • Creative Commons License by Author(s)