Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    MODERNIZED LOSS-OF-COOLANT & BLACKOUT ACCIDENT MANAGEMENT STRATEGY AT NUCLEAR POWER PLANTS WITH WWER

  • Authors

    Skalozubov Volodymyr
    Spinov Vladislav
    Spinov Dmitro
    Gabalaya Taisiya
    Kochnyeva Valeria

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2020
    Issue 1(60)
    UDC 629.031
    DOI 10.15276/opu.1.60.2020.06
    Pages 53-60
  • Abstract

    The analysis of the known results of RELAP5/V.3.2 simulation for loss of coolant & blackout accidents at WWER nuclear power plants showed that the design accident management strategies with design passive safety systems do not provide the necessary safety conditions for the maximum permissible temperature of fuel claddings, the minimum permissible level of coolant in the reactor and feed water in the steam generators. This work presents the modernized loss of coolant & blackout accident management strategy based on promising heat removal passive systems, reactor level control systems and steam generator feed water level control systems. A conservative thermohydrodynamic model was developed to substantiate the modernized loss of coolant & blackout accident management strategy. The main conservative assumptions of the model: a complete long-term failure (for 72 hours) of all electric pumps of the safety systems is accepted and the maximum interloop leak (equivalent to the steam generator collector cover lift-up) is modelled. The analysis of the calculation results showed that the modernized loss of coolant & blackout accident management strategy provides the necessary safety conditions for the maximum allowable temperature of the fuel claddings, for the minimum acceptable level of coolant and feed water. The presented results of computational modelling of blackout accident management strategies for nuclear power plants can be used to modernize and improve symptom-informed emergency instructions and guidelines for the severe accident management at nuclear power plants with WWER. Application of the results of computational modelling of blackout accident management strategies is generally not substantiated for other types of reactor facilities. In this case, it is necessary to develop calculated models for blackout accident management taking into account the specifics of the structural and technical characteristics and operating conditions for safety related systems of nuclear power plants.

  • Keywords accident management, loss of coolant, blackout
  • Viewed: 75 Dowloaded: 1
  • Download Article
  • References

    Література

    1. Horche W., Kirmse R., Weber J.P. Bewertung vorliegender Stцrfallanalysen anderer Institutionen fьr das Kernkraftwerk Stendal und andere WWER-1000/W-320: Interner Bericht. Kцln : GRS, 1991. 197 p.

    2. NUREG-1489. A Review of NRC Staff Uses of Probabilistic Risk Assessment. Washington : US NRC, 1994. 272 p.

    3. Анализ аварий на ядерных энергетических установках. Отчет №122-0000.0240-ОТ1. Москва : Атомэнергопроект, 1991. 206 с.

    4. Accident Management Programmes in Nuclear Power Plants. A Guidebook. Technical Report Series № 368. Vienna : International Atomic Energy Agency, 1994. 127 p.

    5. CNS-RM-2005/08 FINAL. Convention on Nuclear Safety. Summary Report. Third Review Meeting of the Contracting Parties, Vienna, Austria, April 11 – 22, 2005. 13 p.

    6. Skalozubov V.I., Kozlov I.L., Komarov Yu.A., Chulkin O.A., Piontkovskyi O.I. Analysis of Nuclear Safety in Diversification of Westinghouse Fuel Assemblies at WWER-1000. Nuclear Physics and Atomic Energy. 2019. 20-2. P. 159–163.

    7. ЕР01/2016.100.ОД.1-Т.1. Расчет теплогидравлических параметров для всех режимов эксплуатации оборудования РУ энергоблока № 3 ОП ЗАЭС. Энергодар : ГП НАЭК «Энергоатом», 2016. 566 с.

    8. EP25-2004.210.ОД.2. Корректировка и обновление ВАБ энергоблока № 5 ЗАЭС. Обесточивание энергоблока с отказом дизель-генераторов. Приложение G2.1. Энергодар : ГП НАЭК «Энерго- атом», 2004. 365 c.

    9. Antropov V., Bukrinsky A., Shvyryaev Yu. Development of Methodology and List of BDBA for WWER-1000 for Quantitative Analysis. SAM-99 “International Information Exchange Forum on Se- vere Accident Management”, Obninsk, Russia, October 18 – 22, 1999. P. 17–24.

    10. Skalozubov V., Chulkin O., Pirkovskiy D., Kozlov I., Komarov Yu. Method for Determination of Water Hammer Conditions and Consequences in Pressurizers of Nuclear Reactors. Turkish Journal of Physics. 2019. 43-3. Р. 229–235.

    11. Skalozubov V., Kozlov I., Chulkin O., Komarov Yu., Piontkovskyi A. Analysis of Reliability-Critical Hydraulic Impact Conditions at WWER-1000 NPP Active Safety Systems. Nuclear & Radiation Safety. 2019. 1(81). Р. 42–45.

    12. Skalozubov V., Bilous N., Pirkovskiy D., Kozlov I., Komarov Yu. Water Hammers in Transonic Modes of Steam-Liquid Flows in NPP Equipment. Nuclear & Radiation Safety. 2019. 2(82). Р. 46–49.

    13. Королев А.В., Деревянко О.В. Резервная подпитка парогенераторов АЭС в условиях электро- обесточивания энергоблока. Ядерная и радиационная безопасность. 2014. 2(62). С. 10–12.

    References

    1. Horche, W., Kirmse, R., & Weber, J.P. (1991). Bewertung vorliegender Stцrfallanalysen anderer Insti- tutionen fьr das Kernkraftwerk Stendal und andere WWER-1000/W-320: Interner Bericht. Kцln: GRS.

    2. NUREG-1489. (1994). A Review of NRC Staff Uses of Probabilistic Risk Assessment. Washington: US NRC, 272.

    3. Accident Analysis at Nuclear Power Facilities. (1991). Report No 122-0000.0240-ОТ1. Moscow: Atomenergoproekt, 206.

    4. Accident Management Programs in Nuclear Power Plants. (1994). A Guidebook. Technical Report Se- ries No 368. Vienna: International Atomic Energy Agency, 127.

    5. CNS-RM-2005/08 FINAL. (2005). Convention on Nuclear Safety. Summary Report. Third Review Meeting of the Contracting Parties. Vienna, Austria, April 11 – 22, 13.

    6. Skalozubov, V.I., Kozlov, I.L., Komarov, Yu.A., Chulkin, O.A., & Piontkovskyi, O.I. (2019). Analysis of Nuclear safety in Diversification of Westinghouse Fuel Assemblies at WWER 1000. Nuclear Physics and Atomic Energy, 20-2, 159–163.

    7. ЕР01/2016.100.ОД.1-Т.1. (2016). Calculation of Thermohydraulic Parameters for All Operating Modes of Reactor Equipment at Zaporizhzhya NPP-3. Energodar: NNEGC “Energoatom”, 566.

    8. EP25-2004.210.ОД.2. (2004). Correction and Updating of PSA of Zaporizhzhya NPP-5. Power Unit Blackout Followed by a Failure of Diesel Generators. Annex G2.1. Energodar: NNEGC “Energoatom”, 365.

    9. Antropov, V., Bukrinsky, A., & Shvyryaev, Yu. (1999). Development of Methodology and List of BDBA for WWER-1000 for Quantitative Analysis. SAM-99 Information Exchange Forum on “Severe Accident Management”. Obninsk, Russia, October 18 – 22, 17–24.

    10. Skalozubov, V., Chulkin, O., Pirkovskiy, D., Kozlov, I., Komarov, Yu. (2019). Method for Determina- tion of Water Hammer Conditions and Consequences in Pressurizers of Nuclear Reactors. Turkish Journal of Physics, 43-3, 229–235.

    11. Skalozubov, V., Kozlov, I., Chulkin, O., Komarov, Yu., & Piontkovskyi, A. (2019). Analysis of Reliability-Critical Hydraulic Impact Conditions at WWER-1000 NPP Active Safety Systems. Nuclear & Radiation Safety, 1(81), 42–45.

    12. Skalozubov, V., Bilous, N., Pirkovskiy, D., Kozlov, I., & Komarov, Yu. (2019). Water Hammers in Transonic Modes of Steam-Liquid Flows in NPP Equipment. Nuclear & Radiation Safety, 2(82), 46–49.

    13. Koroliov, A.V., & Derevianko, O.V. (2014). Accident Makeup of Nuclear Steam Generators in Black- out Conditions. Nuclear & Radiation Safety, 2(62), 10–12.

  • Creative Commons License by Author(s)