Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    EXPERIMENTAL RESEARCH OF CONSOLE BORING BARS OSCILLATIONS UPON FINE STEPPED HOLES BORING

  • Authors

    Orgiyаn А. А.
    Oborsky Gennady A.
    Balaniuk Аnna V.
    Prokopovich Igor V.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2020
    Issue 1(60)
    UDC 621.941
    DOI 10.15276/opu.1.60.2020.01
    Pages 5-13
  • Abstract

    Fine boring is a common way of finishing edge processing. Upon boring stepped hole, on practice it is necessary to design and produce special stepped console boring bars or multi-edged heads. In the experiments there were researched complicated dynamic interactions occurring in the technological system upon multi-edge boring with stepped boring bars. Regularities of forced oscillations ampli- tudes changes upon changes in flexible system parameters and cutting processes have been studied, namely upon changes in mass-geometrical properties of boring bars, stiffness and own frequencies, variation of lengths and diameters of steps. Out-of-roundness of cross sections and roughness values of processed surfaces within the terms of simultaneous and separate work of edges have been researched. The experiments were carried out on machines assembled on the basis of a finishing and boring machine equipped with a high precision spindle head with rotation speed stepless regulation and modern measuring equipment. Measurements were carried out using strain gauge methods as well as a vibration spectrum analyzer with a piezo sensor. Two and three-stage boring rods with different mass geometry parameters were used. Processing diagrams with rotating and non-rotating boring rods were studied. Relative position of edges and cutting depths were also varied during experiments that led to change of values of impact indexes. Complex dynamic interactions at thin boring by step boring bars at simultaneous operation of picks lead to non-monotonous change of amplitudes of forced vibrations, and vibration stability of boring process can either increase or decrease. The practical importance of the work allows to solve the field of application of stepped console boring bars by improving their design on the basis of not only static, but also dynamic calculations. Results of experimental researches are put into basis of theoretical modelling and development of dynamic calculation models. In addition, the results of complex experimental research in scien-tific terms develop technological dynamics as a part of engineering technology.

  • Keywords step boring bar, boring cutter, vibration amplitude, frequency, vibration resistance, technological dynamics
  • Viewed: 96 Dowloaded: 4
  • Download Article
  • References

    Література:

    1. Внуков Ю.Н. Определение динамических характеристик нежестких деталей типа защемленных пластин. Cучаснi технологii в машиноборудованнi. 2011. Вип. 6. С. 6-12.

    2. Оборский Г.А., Паленный Ю.Г., Оргиян Андр.А. Возбуждение изгибно-крутильных колебаний их измерения на вращающихся консольных инструментах. Вістник ХНУ, Технічні науки. 2016.№ 1. С. 146-149.

    3. Zaloga W., Shapoval Y., Kolesnyk V. Increasing of efficiency of parts turning al spindle speed from 5.000 to 10.000 rpm by controlling the dynamics of machining / Monograph: Quality and reliability of technical systems: theory and practice / Editors: Andrii Goroshko, Vilen Royzman, Maryna Zembytska.JVE International Ltd., Lithuania. 2018. Vol. 2. P. 90-102. ISSN 2351-5260, ISBN 978-609-96036-0-5.

    4. Grossi N., Croppi L., Scippa A., Campatelli, G. A dedicated design strategy for active boring bar.Applied Sciences. 2019. 9(17). 3541. DOI: https://doi.org/10.3390/app9173541.

    5. Ren Y., Zhao Q., Liu Y., Ma J. Analysis of bending vibration characteristics of rotating composite bor-ing bar. Journal of Physics: Conference Series. 2019. 1303. DOI:10.1088/1742-6596/1303/1/012147.

    6. Bansal A., Law M. A Receptance Coupling Approach to Optimally Tune and Place Absorbers on Bor-ing Bars for Chatter Suppression. 8th CIRP Conference on High Performance Cutting (HPC 2018).2018. Vol. 77. P. 167-170. DOI: https://doi.org/10.1016/j.procir.2018.08.267.

    7. Yang Y., Munoa J., Altintas Y. Optimization of multiple tuned mass dampers to suppress machine toolchatter. Int. J. of Mach. Tools and Mfg. 2010. 50 (9). P. 834-842.

    8. Bansal A., Law M. A Receptance Coupling Approach to Design Damped Boring Bars. COPEN 10. 2017.P. 798-801.

    9. Lijia Liu, Xianli Liu, Yuanhong Liu. Non-uniform sampling finite-time control for networked control systems via event-driven transmission. Advances in Mechanical Engineering. 2016. Vol. 8(4). P. 1-10.

    10. Amato F., Ariola M.,  Cosentino C. Finite-time stability of linear time-varying systems: analysis and controller design. IEEE Transactions on  Automatic  Control.  2010.  55  (4). P.  1003–1008.  DOI: 10.1109/TAC.2010.2041680

    11. Knut Sшrby, Dan Шstling. Precision turning with instrumented vibration-damped boring bars. 8th CIRP Conference on High Performance Cutting (HPC 2018). 2018. Vol. 77.  P. 666–669.  DOI: https://doi.org/10.1016/j.procir.2018.08.181.

    12. Analysis and predictionon the cutting process of constrained damping boring bars based on PSO-BP neural network model / Xianming Chen, Tieliu Wang, Mingming Ding, Jing Wang, Jianqing Chen, Jun Xia Yan. Journal of vibroengineering. 2017. Vol. 19, Is. 2. P. 878–893. DOI: 10.21595/jve.2017.18068.

    13. Брижан Т.М. Условия повышения точности обработки отверстий. Инновации, качество и сервис в технике и технологиях: сб. науч. тр. 4-ой международ. науч.-практ. конф. В 3-х томах, Том 1. Курск : Юго-Зап. гос. ун-т, 2014. С. 104–109.

    14. Кочанов Ю.С. Алмазно-расточные станки. Источники погрешностей при тонком растачивании. Фундаментальные и прикладные проблемы техники и технологии. Орловский государственный университет им. И.С. Тургенева. 2014. № 6(308). С. 82–85.

    15. Родионова H.A. Оценка отклонений формы цилиндрических поверхностей собираемых деталей. Сборка в машиностроение. 2004. № 11. С. 9–12. 

    16. Основы теории резания материалов: учебник / Н.П. Мазур, Ю.Н. Внуков, А.И. Грабченко и др. Под общ. ред. Н.П. Мазура и А.И. Грабченко. 2-е изд., перераб. и дополн. Харьков : НТУ«ХПИ», 2013. 534 с. 

     

    References 

    1. Vnukov, Yu.N., (2011). Finding Dynamic Properties of Non-rigid Parts Like Jammed Plates. Modern tehcnologies in machine building, 6, 6–12.

    2. Oborskyi, H.A., Palennyi, Yu.H, & Orhiian, Andr. (2016). A Triggering Bending-Rotating Oscillation and Measurement Thereof on Rotating Console Tools. Technical Sciences. Vistnyk KNU. – Khmelny-tskyi, 1, 146–149.  

    3. Zaloga, W., Shapoval, Y.,  &  Kolesnyk, V. (2018).  Increasing of efficiency of parts turning al spindle speed from 5,000 to 10.000 rpm by controlling the dynamics of machining. Monograph. Quality and reli-ability of technical systems: theory and practice. Andrii Goroshko, Vilen Royzman, Maryna Zembytska (Ed.); JVE International Ltd., Lithuania, 2, 90–102. ISSN 2351-5260, ISBN 978-609-96036-0-5. 

    4. Grossi, N., Croppi, L., Scippa, A., &  Campatelli, G.  (2019).  A dedicated design strategy for active boring bar. Applied Sciences, 9(17), 3541. DOI: https://doi.org/10.3390/app9173541. 

    5. Ren, Y., Zhao, Q., Liu, Y., & Ma, J. (2019). Analysis of bending vibration characteristics of rotating composite boring bar.  Journal of Physics: Conference Series, 1303. DOI:10.1088/1742-6596/1303/1/012147. 

    6. Bansal, A & Law, M. (2018). A Receptance Coupling Approach to Optimally Tune and Place Absorb-ers on Boring Bars for Chatter Suppression. 8th CIRP Conference on High Performance Cutting, 77, 167–170. DOI: https://doi.org/10.1016/j.procir.2018.08.267. 

    7. Yang, Y., Munoa, J. & Altintas, Y. (2010). Optimization of multiple tuned mass dampers to suppress machine tool chatter. Int. J. of Mach. Tools and Mfg., 50 (9), 834–842. 

    8. Bansal, A. & Law, M. (2017). A Receptance Coupling Approach to Design Damped Boring Bars. COPEN 10, 798–801. 

    9. Lijia, L., Xianli, L. & Yuanhong, L. (2016). Non-uniform sampling finite-time control for networked control systems via event-driven transmission. Advances in Mechanical Engineering, 8(4), 1–10.

    10. Amato, F., Ariola, M.,  & Cosentino, C. (2010). Finite-time stability of linear time-varying systems: analysis and controller design. IEEE Transactions on Automatic Control, 55 (4),  1003–1008. DOI: 10.1109/TAC.2010.2041680. 

    11. Knut, S., &  Dan,  Ш. (2018). Precision turning with instrumented vibration-damped boring bars. 8th CIRP Conference on High Performance Cutting (HPC 2018),  77,  666–669.  DOI: https://doi.org/10.1016/j.procir.2018.08.181. 

    12. Xianming, C., Tieliu, W., Mingming, D., Jing, W., Jianqing, C., & Jun, X. Y. (2017). Analysis and pre-dictionon the cutting process of constrained damping boring bars based on PSO-BP neural network model. Journal of vibroengineering, 19, 2, 878–893. DOI: 10.21595/jve.2017.18068. 

    13. Brizhan, T.M. (2014). Conditions for Increase of Holes Processing Accuracy Innovation, Quality and Service in Machinery and Technologies, 1, 104–109. 

    14. Kochanov, Yu. S. (2014). Diamond-Boring Machine. Sources of Errors upon Fine Boring. Fundamental and Applied Problems of Machines and Technology, 6(308), 82-85. 

    15. Rodionova, N.A. (2004). Estimation of Cylindrical Surfaces Shape Errors of Assembled Parts. Sborka v mashinostroyeniye, 11, 9–12. 

    16. Mazur, N.P., Vnukov, Yu.N, &  Hrabchenko, A.I. et al. (2013).  Basics of Materials Cutting Theory: Handbook.  N.P. Mazur,  A.I. Hrabchenko  (Ed.)  2nd  edition, reworked and added.  Khar'kov: NTU«KHPI». 

  • Creative Commons License by Author(s)