Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    SRUCTURE AND STABILITY OF SOLID SOLUTIONS CRYSTAL LATTICE BASED ON ZIRCONIUM DIOXIDE

  • Authors

    Chulkin Oleg
    Kravchenko Volodymyr P.
    Zotyeyev V. O.
    Zotyeyev O.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2019
    Issue 3(59)
    UDC 539.2
    DOI 10.15276/opu.3.59.2019.08
    Pages 59-63
  • Abstract

    The goal of research is the study of problems, which are connected with stability of thin film of zirconium dioxide on the surface of fuel rod during operation. This work has been carried out to investigate the possibility of coolant radioactivity reduction, which depends on the hermetic of fuel rod shell. The integrity of this shell depends on many factors, the main one of which is the stability of zirconium dioxide film. There are some kind of phase transitions in this film, which are based on the integral influence of temperature, pressure and radiation. The process of corrosion includes – oxidative and radioactive corrosion. Oxidative corrosion plays the leading role among them and its speed can increase with the presence of radioactive one. The purpose of roentgen-graphic studies of solid solutions based on zirconium dioxide was an obtaining of information regarding the structure of these compounds in conjunction with different additives of ion stabilizers. At the same time, experiments with different samples subjected to annealing at temperature of 950 ºC during different periods were done. Roentgen stud-ies were carried out on the X-ray diffractometer DRON-3.0 in the emission of Kα Fe (λ=0.194 nm). Experimental results show that an addi-tion of stabilizing ions (in certain molar concentrations) Ca, Y, Nd, Sc into the solid solution of zirconium dioxide will lead to the stabiliza-tion of cubic phase. In addition, it draws an attention the redistribution of peaks intensity in all researched systems subjected to the annealing at temperature 1223 K that is close to the temperature of phase transformation from monoclinic structure into tetragonal (1370 K) in the pure zirconium dioxide. This can be evidence of stabilizing ion streamlining at the special nodes of crystalline lattice of the matrix grid. However, it doesn’t lead to the significant change of crystalline lattice parameters and as a result the specific volume of unit cell remains almost with-out change. It means that solid solutions based on zirconium dioxide that have stabilized cubic phase can be used as protective coatings.

  • Keywords zirconium dioxide, X-ray structural analysis, ion stabilizer
  • Viewed: 93 Dowloaded: 0
  • Download Article
  • References

    Література

    1. Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirco-nium alloys / Platt P., Frankel P., Gass M., Howels R., Preuss M. Journ. of Nuclear materials. 2014. 454 (1-3). 290–297.

    2. Слісенко В.І., Зотєєв В.О., Василькевич О.А., Зотєєв О.Є., Кротенко В.В. Структура та фононні спектри нанорозмірних частинок твердих розчинів на основі діоксиду цирконію. Збірник допові-дей 5-ї Міжнародної науково-практичної конференції «Безпека та ефективність атомної енерге-тики» 5–9 вересня 2016, м. Одеса ,Україна. 213–217.

    3. Smith L., Mohammed T., Koh L., Reaney J. Life cycle assessment of functional material and devices: opportunities, challenges and current and future trends, Juornal Amer. Ceramic. Society. 2019. 102, № 12, 7037–7064.

    4. Ghyngazov S. Influence of mechanical treatment on consolidation processes of ultradisperse powder of stabilized zirconium oxide. Inorganic Materials: Applied Research. 2018. 9, № 2. 343–346.

    5. Sintering kinetics of ZrO2 nanopowders modified by grope IV elements / Lakusta M., Danilenko I., Volkova G., Loladze L., Burchovetsky V. Applied Ceramic Technology. 2019. 16, №4. 1481–1492.

    6. Wei Liu, Lingling Jin, Shiwei Wang. The absorbtion and emission properties of highly transparent ZrO2 – doped Yb3+: Y2O3 ceramics. Journal Amer. Ceramic. Society. 2019. 102, №9. 5020–5024.

    7. Gaglieri C., Alarcon R., de Godoi M. Thermal study of ZrO2 nanoparticles: effect of heating and cool-ing cycles on solid-solid transition. Thermochim. Acta. 2017. 653. 59–61.

     

    References

     

    1. Platt, P., Frankel, P., Gass, M., Howels, R., & Preuss, M. (2014). Finite element analysis of the tetrago-nal to monoclinic phase transformation during oxidation of zirconium alloys. Journ. of Nuclear materi-als, 454 (1-3), 290–297.

    2. Slisenko, V., Zoteev, V., Vasilkevitch, O., Zoteev, O., & Krotenko, V. (2016). Structure and phonon spectra of nanosized particles of solid solutions based on zirconium dioxide. Proceedings of the 5th International Scientific and Practical Conference “Atomic Energy Safety and Efficiency” September, 5–9, 2016, Odessa, Ukraine, 213–217.

    3. Smith, L., Mohammed, T., Koh, L., & Reaney, J. (2019). Life cycle assessment of functional material and devices: opportunities, challenges and current and future trends. Juornal Amer. Ceramic. Society, 102, № 12, 7037–7064.

    4. Ghyngazov, S. (2018). Influence of mechanical treatment on consolidation processes of ultradisperse powder of stabilized zirconium oxide. Inorganic Materials: Applied Research, 9, 2, 343–346.

    5. Lakusta, M., Danilenko, I., Volkova, G., Loladze, L., & Burchovetsky, V. (2019). Sintering kinetics of ZrO2 nanopowders modified by grope IV elements. Applied Ceramic Technology, 16, 4, 1481–1492.

    6. Wei Liu, Lingling Jin, & Shiwei Wang. (2019). The absorbtion and emission properties of highly trans-parent ZrO2 – doped Yb3+: Y2O3 ceramics. Journal Amer. Ceramic. Society, 102, 9, 5020–5024.

    7. Gaglieri, C., Alarcon, R., de Godoi, M. (2017). Thermal study of ZrO2 nanoparticles: effect of heating and cooling cycles on solid-solid transition. Thermochim. Acta, 653, 59–61.

     

  • Creative Commons License by Author(s)