Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    ESTIMATION OF MCP-195M ELEMENTS STRESS-STRAIN STATE AT THE INITIAL DYNAMICS OF SHAFT JAMMING/MPA TRANSIENT PROCESS

  • Authors

    Filonov V.
    Dubyk Y.
    Lukianenko K.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2019
    Issue 3(59)
    UDC 532.5
    DOI 10.15276/opu.3.59.2019.04
    Pages 25-37
  • Abstract

    MCP is an important element for NPPs safe operation. During the lifetime prolongation project for domestic power units, special attention is paid to assessment of MCPs body state. First, this is because pump body serves as a safety barrier, and that it is a hard-replaceable NPP element. The MCP elements integrity is estimated for many representative emergency transients, which are calculated using system thermal hydraulics codes (RELAP/CORSAR). In the best case, in such codes the pump unit can be represented by first order inertial link model, which makes it possible to simulate its run-out. However, such models cannot fundamentally reproduce MCP dynamic during the instantaneous change in torque, as well as during shock changes in absolute pressure. This actually leads to uncertainties of initial dynamics for such transients that can effect on their qualitative and quantitative characteristics. In fact, obtained by nodal thermal hydraulic codes results are irrelevant, i.e. it is unclear whether they underestimate or overestimate thermal parameters important for future strength calculations. This work presents simplified CFD-models and CAE-models of MCP-195М for analysis of transient process with pump jamming initial dynamics. There is an uncertainty regarding the absolute value of dynamic loads amplitude when pump shaft is jamming. It is also incomprehensible to which phenomena group we should refer this process, and is taking account of it phenomena due prolongation of MCP elements service life is critical. Developed CFD-model includes coolant domain and CAE-model of MCP construction elements, which create a unidirectional fluid – solid interaction interface. CFD-model was validated for a correspondence with experimental pump characteristics. For analysis of transient process in flow MCP part “compressible liquid method” was used. Initially, this method was tested for correct prediction of classical water hammer characteristics. Stress assessment of MCP elements indicates that strength criterions are satisfied. Pressure change amplitudes obtained using CFD for initial dynamics

  • Keywords CFD-simulation, MCP, impeller, transient process, strength assessment, BLOCA, CAE-model
  • Viewed: 105 Dowloaded: 1
  • Download Article
  • References

    Література

    1. Безруков Ю.А., Лисенков Е.А., Селезнев А.В. Анализ возможности гидроударов в первом конту-ре реакторов ВВЭР. ОАО ОКБ «Гидропресс», г. Подольск, Россия. URL: https://studylib.ru/doc/ 767399/analiz-vozmozhnosti-gidroudarov-v-pervom-konture.

    2. ANSYS Fluent User's Guide. 2013. URL: http://www.pmt.usp.br/academic/martoran/ notasmodelos-grad/ANSYS%20Fluent%20Users%20Guide.pdf.

    3. Dubyk Y., Filonov V., Ishchenko O., Oryniak I., Filonova Y., Dynamic assessment of the core barrel during loss of coolant accident. Proceedings of the ASME 2018 Pressure Vessels & Piping Conference – PVP2018-84762, July 15–20, Prague, Czech Repuplic.

    4. Near Wall Modeling – Turbulence Modeling Using Ansys CFX.

    5. Пугачев П.В., Свобода Д.Г., Жарковский А.А. Расчет вязкого течения в лопастных гидромаши-нах с использованием пакета ANSYS CFX. Санкт – Петербург : Издательство Политехнического университета, 2016. 120 с.

    6. Menter F. CFD Best Practice Guidelines for CFD Code Validation for Reactor-Safety Applications, EVOL-ECORA-D01. 2002.

    7. Ломакин А.А. Центробежные и осевые насосы. «Машиностроение», 1966. 364 с.

    8. Лагвинов С.А., Безруков Ю.А., Драгунов Ю.Г. Экспериментальное обоснование теплогидравли-ческой надежности реакторов ВВЭР. Москва : ИКЦ «Академкнига», 2004. 255 c.

    9. Волков В.Ю., Голибродо Л.А., Крутиков А.А., Кудрявцев О.В., Надинский Ю.Н., Скибин А.П. Разработка CFD модели ГЦНА. Суперкомпьютерные дни в России 2016. 2016. ОАО ОКБ «Гид-ропресс», г. Подольск, Россия. С. 556–565.

    10. Bestion D. Applicability of two-phase CFD to nuclear reactor thermalhydraulics andelaboration of Best Practice Guidelines. Intern. J. Nuclear Engineering and Design. 2012. 253. P 311–321.

    11. Rahgoshay M., Hashemi-Tilehnoee M. Pressure distribution in the containment of VVER-1000 during the first seconds of large break LOCA. Intern. J. Progress in Nuclear Energy. 2016. 88. P 211–217.

    12. BARC/1998/E/032, Fluid Structure Interaction Studies on Acoustic Load Response of Light Water Nu-clear Reactor Core Internals Under Blowdown Condition. Bhabha Atomic Research Centre. 1998. Mumbai, India.

    13. Alamgir Md., Lienhard J.H. Correlation of Pressure Undershoot during Hot-Water Depressurization. Journal of Heat Transfer. 1981. Vol. 103. P. 53–55.

    14. Нормы расчета на прочность оборудования и трубопроводов для АЭС. Москва : Энергоатомиз-дат, 1989. 525 с.

     

    References

     

    1. Bezrukov, Yu.A., Lisenkov, E.A., & Seleznev, A.V. Analysis of water hammer possibility in the primary circuit of VVER reactors. OKB GIDROPRESS, Podolsk, Russia. Retrieved from: h-ttps://studylib.ru/doc/767399/analiz-vozmozhnosti-gidroudarov-v-pervom-konture.

    2. ANSYS Fluent User's Guide. (2013). Retrieved from: http://www.pmt.usp.br/academic/martoran/ no-tasmodelosgrad/ANSYS%20Fluent%20Users%20Guide.pdf.

    3. Dubyk, Y., Filonov, V., Ishchenko, O., Oryniak, I., & Filonova, Y. (2018). Dynamic assessment of the core barrel during loss of coolant accident. Proceedings of the ASME 2018 Pressure Vessels & Piping Conference – PVP2018-84762, July 15-20, Prague, Czech Repuplic.

    4. Near Wall Modeling – Turbulence Modeling Using Ansys CFX.

    5. Pugachev, P.V., Svoboda, D.G., & Zharkovskii, A.A. (2016). Calculation of viscous flow in blade hy-draulic machines using ANSYS CFX. St. Petersburg: Publishing house of the Polytechnic University.

    6. Menter, F. (2002). CFD Best Practice Guidelines for CFD Code Validation for Reactor-Safety Applica-tions, EVOL-ECORA-D01.

    7. Lomakin, A.A. (1966). Centrifugal and axial pumps. Mashinostroenie.

    8. Lagvinov, S.A., Bezrukov, Yu.A., & Dragunov, Yu.G. (2004). Experimental justification of VVER re-actors thermal-hydraulic reliability. Moscow: IKTs Akademkniga.

    9. Volkov, V. Yu., Golibrodo, L.A., Krutikov, A.A., Kudryavtsev, O.V., Nadinskii, Yu.N., & Skibin, A.P. (2016). MCPAs CFD model development. Supercomputer days in Russia 2016. Podolsk: OKB G-IDROPRESS, Russia.

    10. Bestion, D. (2012). Applicability of two-phase CFD to nuclear reactor thermalhydraulics andelaboration of Best Practice Guidelines. Intern. J. Nuclear Engineering and Design, 253, 311–321.

    11. Rahgoshay, M., & Hashemi-Tilehnoee, M. (2016). Pressure distribution in the containment of VVER-1000 during the first seconds of large break LOCA. Intern. J. Progress in Nuclear Energy, 88, 211–217.

    12. BARC/1998/E/032. (1998). Fluid Structure Interaction Studies on Acoustic Load Response of Light Water Nuclear Reactor Core Internals Under Blowdown Condition. Bhabha Atomic Research Centre, Mumbai, India.

    13. Alamgir, Md., & Lienhard, J.H. (1981). Correlation of Pressure Undershoot during Hot-Water Depres-surization. Journal of Heat Transfer, 103, 53–55.

    14. Strength calculation standards for NPP equipment and pipelines. (1989). Moscow: Energoatomizdat.

     

  • Creative Commons License by Author(s)