Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    DEVELOPMENT OF A MODEL OF PROCESSES FOR THE THER-MAL PROCESSING OF ORGANIC MATTERS OF VARIABLE COMPOSITION

  • Authors

    Brunetkin Alexander I.
    Maksimov М. М.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2019
    Issue 2(58)
    UDC 541.11
    DOI 10.15276/opu.2.58.2019.03
    Pages 21-32
  • Abstract

    The aim is development of a single model of various processes for the thermal processing of organic substances. The possibility of determining the composition of substances in the process of their processing in real time is taken into account. It is possible to take into account the different phase state of the feedstock. The model is based on the method of calculating the processes of fuel combustion in liquid rocket engines. In the earlier studies, a comparison was made of the results of calculations based on it with the available data for the case of methane and ethyl alcohol burning in air. The proposed model is distinguished by the possibility of taking into account the composition of the reaction products in the condensed phase in the form of a carbonaceous residue. Its presence accompanies the pyrolysis process. The composition of the products of the process of slow pyrolysis of pine wood is calculated. The results are compared with the available data. To determine the unknown composition of the feedstock, the previously developed model for the case of gaseous presentation is used. As a result, the gross formula of the gaseous fuel is determined. The peculiarity of the process under consideration is the need to ensure isoenthalpy of the combustion process. Such a condition can be provided in a rocket type combustion chamber with regenerative cooling. It is noted that the results obtained in this way can be extended to the case of various types of combustible substances in a condensed state. The developed model of thermal conversion and, on its basis, a method for determining the unknown composition of heterophasic organic combustible substances can be used in the processing of various alternative types of combustible, industrial, and household waste. The real-time determination of their variable composition may allow the organization of a controlled process of burning them. As a result of the work: a single model is selected and adapted to solve the problems of combustion, gasification and slow pyrolysis with a known composition of the initial hydrocarbon substances; results of calculations based on it are given; A method for determining the real-time composition of the hydrocarbon component of combustible substances in various states of aggregation is proposed.

  • Keywords organic raw materials, thermal conversion, composition determination
  • Viewed: 177 Dowloaded: 1
  • Download Article
  • References

    Література

     

     

    1. New Satellite Data Reveals Progress: Global Gas Flaring Declined in 2017. Press release, July 17, 2018. URL: https://www.worldbank.org/en/news/press-release/2018/07/17/new-satellite-data-reveals-progress-global-gas-flaring-declined-in-2017.

     

    2. Eman A.E. Gas Flaring in Industry: an Overview. Petroleum & Coal. 2015. 57(5). 532-555. URL: www.vurup.sk/petroleum-coal.

     

    3. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. URL: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5__FINAL_full_wcover.pdf.

     

    4. Brown R. C. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. Wiley, 2019. 408 p. ISBN: 978–1–119–41757–6.

     

    5. Perrot J.-F., Subiantoro A. Municipal Waste Management Strategy Review and Waste-to-Energy Poten-tials in New Zealand. Sustainability. 2018. 10(9). 3114. DOI: https://doi.org/10.3390/su10093114.

     

    6. Astrup T.F., Tonini D., Turconi R., Boldrin A. Life cycle assessment of thermal Waste-to-Energy tech-nologies: Review and recommendations. Waste Management. 2015. Vol. 37. 2015. P. 104–115. DOI: https://doi.org/10.1016/j.wasman.2014.06.011.

     

    7. Bosmans A., Vanderreydt I., Geysen D., Helsen L. The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review. Journal of Cleaner Production. 2013. Vol. 55. P. 10–23. DOI: https://doi.org/10.1016/j.jclepro.2012.05.032.

     

    8. Leibbrandt N.H., Aboyade A.O., Knoetze J.H., Görgens J.F. Process Efficiency of Biofuel Production Via Gasification and Fischer–Tropsch Synthesis. Fuel. 2013. Vol. 109. 2013. P. 484–492. DOI: doi.org/10.1016/j.fuel.2013.03.013.

     

    9. An overview of advances in biomass gasification / V.S. Sikarwar, M. Zhao, P. Clough et al. Energy Environ. Sci., 2016, 9, 2939-2977. DOI: 10.1039/C6EE00935B.

     

    10. Samiran N.A., Jaafar M.N.M., Ja’afar M., Chong C.T. Review of Biomass Gasification Technology to produce Syngas. American-Eurasian Journal of Sustainable Agriculture. 8(7),•March 2014. URL: https://www.researchgate.net/publication/278849675.

     

    11. Kwiatkowski K., Dudyński M., Bajer K. Combustion of Low-Calorific Waste Biomass Syngas. Flow, Turbulence and Combustion. 2013. Vol. 91, Issue 4. P. 749–772. DOI: https://doi.org/10.1007/s10494-013-9473-9.

     

    12. Potential of Pyrolysis Processes in the Waste Management Sector / D.Czajczyńska, L.Anguilano, H.Ghazal, R.Krzyżyńska, A.J.Reynolds, N.Spencer, H.Jouharaa / Thermal Science and Engineering Progress. 2017. Vol. 3. P. 171–197. DOI: doi.org/10.1016/j.tsep.2017.06.003.

     

    13. A review on pyrolysis of plastic wastes / S.D.A. Sharuddin, F. Abnisa, Wan M.A. Wan Daud, M.K. Aroua. Energy Conversion and Management. 2016. 115. 308–326. DOI: https://doi.org/ 10.1016/j.enconman.2016.02.037.

     

    14. An open‐source biomass pyrolysis reactor / D. Woolf, J. Lehmann, S. Joseph and others. Biofuels, Bio-products and Biorefining. 2017. Vol. 11, Is. 6. DOI: https://doi.org/10.1002/bbb.1814.

     

    15. Huang Y.-F., Chiueh P.-T., Lo S.-L. A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research. 2016. Vol. 26, Is. 3. P. 103–109. DOI: https://doi.org/ 10.1016/j.serj.2016.04.012.

     

    16. Максимов М.В., Брунеткин А.И., Бондаренко А.В. Модель и метод определения условной фор-мулы углеводородного топлива при сжигании. Східно-європейський журнал передових техно-логій. 2013. №6/8 (66). С. 20–27.

     

    17. Определение состава сжигаемого газа методом ограничений как задачи интерпретации модели / А. И. Брунеткин, В. О. Давыдов, А. В. Бутенко, А. П. Лысюк, А. В. Бондаренко. Східно-європейський журнал передових технологій. 2019. №3/6 (99). С. 22–30. DOI: 10.15587/1729–4061.2019.169219.

     

    18. Термодинамические и теплофизические свойства продуктов сгорания: справочник: в 6т. / под науч. ред. акад. В.П. Глушко. Москва: ВИНИТИ; Топлива на основе кислорода и воздуха. 1973. Т. 3. 624 с.

     

    19. Брунеткин А.И., Максимов М.В. Метод определения состава горючих газов при их сжигании. Науковий вісник НГУ. 2015. №5. С. 83–90. URL: http://nbuv.gov.ua/UJRN/Nvngu_2015_5_16.

     

    20. Максимов М.В., Брунеткин А.И., Максименко А.А., Лысюк О.В. Математическая модель опре-деления состава смеси углеводородных кислородосодержащих газов сжигаемого топлива. Вчені записки таврійського національного університету ім. В.І. Вернадського, Серія Технічні науки. 2018. Т. 29(68), №1, C. 77–84. URL: http://nbuv.gov.ua/UJRN/sntuts_2018_29_1%282%29__17.

     

     

    References

     

     

    1. New Satellite Data Reveals Progress: Global Gas Flaring Declined in 2017. Press release, July 17, 2018. Retrieved from: https://www.worldbank.org/en/news/press-release/2018/07/17/new-satellite-data-reveals-progress-global-gas-flaring-declined-in-2017.

    2. Eman, A.E. (2015). Gas Flaring in Industry: an Overview. Petroleum & Coal 57(5), 532–555. Retrieved from: www.vurup.sk/petroleum-coal.

    3. IPCC, 2014: (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Retrieved from: https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5__FINAL_full_wcover.pdf.

    4. Brown, R. C. (2019). Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. Wiley. ISBN: 978–1–119–41757–6.

    5. Perrot, J.-F., & Subiantoro, A. (2018). Municipal Waste Management Strategy Review and Waste-to-Energy Potentials in New Zealand. Sustainability, 10(9), 3114. DOI: https://doi.org/ 10.3390/su10093114.

    6. Astrup, T.F., Tonini, D., Turconi, R., & Boldrin, A. (2015). Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations. Waste Management, 37, March 2015, 104–115. DOI: https://doi.org/10.1016/j.wasman.2014.06.011.

    7. Bosmans A., Vanderreydt I., Geysen D., & Helsen L. (2013). The crucial role of Waste-to-Energy tech-nologies in enhanced landfill mining: a technology review. Journal of Cleaner Production, 55, 10–23. DOI: https://doi.org/10.1016/j.jclepro.2012.05.032.

    8. Leibbrandt, N.H., Aboyade, A.O., Knoetze, J.H., & Görgens, J.F. (2013). Process Efficiency of Biofuel Production Via Gasification and Fischer–Tropsch Synthesis. Fuel, 109, 484–492. DOI: doi.org/10.1016/j.fuel.2013.03.013.

    9. Sikarwar, V.S. Zhao, M., Clough, P. & et al. (2016). An overview of advances in biomass gasification. Energy Environ. Sci., 9, 2939-2977. DOI: 10.1039/C6EE00935B.

    10. Samiran, N.A., Jaafar, M.N.M., Ja’afar, M., & Chong, C.T. (2014). Review of Biomass Gasification Technology to produce Syngas. American-Eurasian Journal of Sustainable Agriculture 8(7). Retrieved from: https://www.researchgate.net/publication/278849675.

    11. Kwiatkowski, K., Dudyński, M., & Bajer, K. (2013). Combustion of Low-Calorific Waste Biomass Syngas. Flow, Turbulence and Combustion, 91, 4, 749–772. DOI: https://doi.org/10.1007/s10494-013-9473-9.

    12. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A.J., Spencer, N., & Jouharaa, H. (2017). Potential of Pyrolysis Processes in the Waste Management Sector. Thermal Sci-ence and Engineering Progress, 3, 171–197. DOI: doi.org/10.1016/j.tsep.2017.06.003.

    13. Sharuddin, S.D.A., Abnisa, F., Wan Daud Wan, M.A., & Aroua, M.K. (2016). A review on pyrolysis of plastic wastes. Energy Conversion and Management, 115, 308–326. DOI: https://doi.org/ 10.1016/j.enconman.2016.02.037.

    14. Woolf, D., Lehmann, J., Joseph, S. & et al. (2017). An open‐source biomass pyrolysis reactor. Biofuels, Bioproducts and Biorefining, 11, 6. DOI: https://doi.org/10.1002/bbb.1814.

    15. Huang, Y.-F., Chiueh, P.-T. , & Lo, S.-L. (2016). A review on microwave pyrolysis of lignocellulosic biomass. Sustainable Environment Research, 26, 3, 103–109. DOI: https://doi.org/ 10.1016/j.serj.2016.04.012.

    16. Maksymov, M.V., Brunetkin, А.I., & Bondarenko, A.V. (2013). Model and Method for Determining the Conditional Formula for Hydrocarbon Fuel During Combustion. Eastern-European Journal of Enterprise Technologics, 6/8 (66), 20–27.

    17. Brunetkin, O., Davydov, V., Butenko, O., Lysiuk, G., & Bondarenko, A. (2019). Determination of the Composition of the Combined Gas by the Method of Limitations as the Tasks of the Interpretation of the Model. Eastern-European Journal of Enterprise Technologics, 3/6 (99), 22–30. DOI: 10.15587/1729–4061.2019.169219.

    18. Glushko, V.P., (Ed). (1971). Thermodynamic and Thermophysical Properties of Combustion Products: a Handbook (Vols 1–6). Moscow, Soviet Union : All–Union Institute of Scientific and Technical In-formation, vol. 3.

    19. Brunetkin, А.I., & Maksymov, M.V. (2015). Method for Determining the Composition of Combustion Gases when Burned. Scientific Journal Natsionalnho Mining University, 5, 83–90. URL: http://nbuv.gov.ua/UJRN/Nvngu_2015_5_16.

    20. Maksimov, M.V., Brunetkin, O.I., Maksimenko, A.A., & Lysyuk, O.V. (2018). A Mathematical Model for Determining the Composition of a Mixture of Hydrocarbon Oxygen-Containing Gases of Com-busted Fuel. All the notes of the Tauride National University B.I. Vernadskogo, Technology. 29 (68), 1, 77-84. URL: http://nbuv.gov.ua/UJRN/sntuts_2018_29_1%282%29__1.

  • Creative Commons License by Author(s)