Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Water hammers into pipeline systems because of oscillatory instability

  • Authors

    Skalozubov V.
    Chulkin O.
    Alali M.
    Bilous N.
    Gablaya Т.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2019
    Issue 1(57)
    UDC 621.039
    DOI 10.15276/opu.1.57.2019.10
    Pages 84-89
  • Abstract

    The paper presents an analysis of well-known research on determining of the causes and conditions for water hammers into pipeline systems of different power facilities. Pulse high-amplitude dynamic impact on power equipment and pipeline system elements accompanies water hammers. When water hammers, the kinetic energy of the flow stagnation turns into the energy of the water hammer pulse. Water hammers can significantly affect reliability and operability of power equipment and pipeline system elements. It was revealed that oscillatory hydrodynamic instability effects are the least studied causes and conditions for water hammers into pipeline systems of power facilities. The method to determine the conditions for water hammers in closed forced circulation circuits of energy systems is considered. The method is based on the conditions for oscillatory hydrodynamic instability because of the inertia of the pump head-flow characteristic. The “time delay” of response of the pump head-flow characteristic to changing the flow hydrodynamic parameters defines the inertia. Verification of the considered method to specify conditions for water hammers is provided by the example of known results of experimental research. Professor Korolev’s experimental data obtained at the closed circulating experimental stand with piston pumps are used to verify the considered method. Calculations and experiments agree quite satisfactorily with the exception of a single mode, which also does not correlate, with other experimental data.

  • Keywords water hammer, verification, power equipment, pipeline system, inertia, oscillatory hydrodynamic instability, pump head-flow characteristic
  • Viewed: 36 Dowloaded: 1
  • Download Article
  • References

    Література

    1. Комплекс методов переоценки безопасности атомной энергетики Украины с учетом уроков эко-логических катастроф в Чернобыле и Фукусиме / Скалозубов В.И., Мазуренко А.С., Козлов И.Л., Оборский Г.А. и др. Одесса: Астропринт, 2013. 244 с.

    2. Safwat Hemmat H., Arustu Asif H., Husaini Syed M. Systematic Methodology for Diagnosis of Water Hammer in LWR power plants. Nucl. Eng. and Design. 1990. 122. P. 365–376.

    3. NUREG/CR-6519. Screening Reactor Steam/Water Piping Systems for Water Hammer. 1997.

    4. Bjorge R.W., Griffith P. Initiation of Water Hammer in Horizontal and Nearly Horizontal Pipes Con-taining Steam and Subcooled Water. ASME Journal of Heat Transfer. 1984. 106(4). P. 835–840.

    5. Lee S.C., Bankoff S.G. Stability of Steam-Water Countercurrent Flow in an Inclined Channel: Part II Condensation-Induced Water Hammer. ASME Journal of Heat Transfer. 1984. 106(4). P. 900–902.

    6. Prasser H.-M., Bottger A., Zschau J., Baranyai G., Ezsol Gy. Thermal effects during condensation in-duced water hammer behind fast acting valves in pipelines. 11th Intern. Conf. on Nuclear Engineering (Tokyo, JAPAN, 20–23 April 2003), ICONE11-36310. Tokyo, 2003. Van Duyne D.A., Yow W., Sa-bin J.W. Water Hammer Prevention, Mitigation and Accommodation. Volume 1: Plant Water Hammer Experience. EPRI Report NP-6766. 1992.

    7. Van Duyne D.A., Yow W., Sabin J.W. Water Hammer Prevention, Mitigation and Accommodation. Volume 1: Plant Water Hammer Experience. EPRI Report NP-6766. 1992. P. 166–174.

    8. Block J. A. Condensation-driven fluid motions. Int. Journal on Multiphase Flow. 1980. Vol. 6. P. 113–129.

    9. Делайе Дж., Гио М., Ритмюллер М. Теплообмен и гидродинамика двухфазных потоков в атомной и тепловой энергетике. Москва : Энергоатомиздат, 1984. 422 с.

    10. Condensation driven water hammer studies for feed water distribution pipe / Savolainen S., Katajala S., Elsing B. et al. Fourth Intern. Seminar on Horizontal Steam Generators (Lappeenranta, Finland, 11–13 March 1997). Lappeenranta, 1997.

    11. Герлига В.А., Хабенский В.Б. Нестабильность потока теплоносителя в энергооборудовании. Мо-сква: Энергоиздат, 1994. 288 с.

    12. Коврижкин Ю.Л., Скалозубов В. И. Термоакустическая неустойчивость теплоносителя в актив-ной зоне водоводяных энергетических реакторов. Одесса: ТЭС, 2003. 171 с.

    13. Фокс Д.А. Гидравлический анализ неустановившегося течения в трубопроводах. Москва: Энер-гоиздат, 1981. 247 с.

    14. Филин Н.В. Жидкостные криогенные системы. Ленинград: Машиностроение, 1985. 247 с.

    15. Королев А.В. Анализ и моделирование теплоэнергетического оборудования, работающего с двухфазными течениями. Одесса: Астропринт, 2010. 456 с.

    16. Жуковский Н.Е. О гидродинамическом ударе в водопроводных системах. М.-Л.: ГИТТЛ, 1949. 100 с.

    17. Korolyov O.V., Zhou HuiYu. Dynamic damper pressure fluctuation in the pumping systems. Праці Одеського політехнічного університету. 2016. Issue 1(48). P. 35–41.

    18. Королев А.В., Чжоу Х. Ю. Исследование динамики поршневого насоса в нормальном режиме и при срыве подачи. Холодильная техника. 2016. Вып. 5, № 52. С. 4–8.

    19. Безруков Ю.А., Лисенков Е.А., Селезнев А.В. Анализ возможности гидроударов в первом конту-ре реакторов ВВЭР. Обеспечение безопасности АЭС с ВВЭР: материалы 6-й междунар. науч.-техн. конф. (Подольск, Россия, 26—29 мая 2009 г.). Подольск : ОКБ «Гидропресс», 2009.

    20. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems / Mazurenko A.S., Skalozubov V.I., Chulkin O.A. et al. Problems of the Regional Energetics. Kishinau, 2017. No. 2(34).

    21. Скалозубов В. И., Чулкин О.А., Пирковский Д.С. Гидроудары вследствие теплогидродинамиче-ской неустойчивости. LAP LAMBERT Academic Publishing. 2018. 64 с.

    References

    1. Skalozubov V.I., Mazurenko A.S., Kozlov I.L., & Oborsky G.A. et al. (2013). A set of methods to re-view the safety of nuclear power engineering in Ukraine, taking into account the lessons of Chernobyl and Fukushima ecological catastrophes. Odessa: Astroprint.

    2. Safwat, Hemmat H., Arustu, Asif H., Husaini, Syed M. (1990). Systematic methodology for diagnosis of water hammer in LWR power plants. Nucl. Eng. and Design, 122, 365–376.

    3. NUREG/CR-6519. Screening Reactor Steam/Water Piping Systems for Water Hammer (1997).

    4. Bjorge, R. W., & Griffith, P. (1984). Initiation of Water Hammer in Horizontal and Nearly Horizontal Pipes Containing Steam and Subcooled Water. ASME Journal of Heat Transfer, 106(4), 835–840.

    5. Lee, S.C., & Bankoff, S.G. (1984). Stability of Steam-Water Countercurrent Flow in an Inclined Chan-nel: Part II Condensation-Induced Water Hammer. ASME Journal of Heat Transfer, 106(4), 900–902.

    6. Prasser, H.-M., Bottger, A., Zschau, J., Baranyai, G., & Ezsol, Gy. (2003). Thermal effects during con-densation induced water hammer behind fast acting valves in pipelines, 11th Intern. Conf. on Nuclear Engineering, ICONE11-36310, Tokyo, JAPAN, (20–23 April 2003).

    7. Van Duyne, D.A., Yow, W., & Sabin, J.W. (1992). Water Hammer Prevention, Mitigation and Ac-commodation. Volume 1: Plant Water Hammer Experience, EPRI Report NP-6766.

    8. Block, J.A. (1980). Condensation-Driven Fluid Motions. Int. Journal on Multiphase Flow, 6, 113–129.

    9. Delhaye, J.M., Giot, M., & Rietmuller, M.L. (1984). Thermohydraulics of Two-Phase Systems for In-dustrial Design and Nuclear Engineering. Moscow: Energoatomizdat.

    10. Savolainen, S., Katajala, S., & Elsing, B. et al. (1997). Condensation Driven Water Hammer Studies for Feed Water Distribution Pipe”, Fourth Intern. Seminar on Horizontal Steam Generators (Lappeenranta, Finland, 11–13 March 1997). Lappeenranta.

    11. Gerliga, V.A., & Khabenskiy, V.B. (1994). Instability of the Coolant Flow in Power Equipment. Moscow: Energoizdat.

    12. Kovrizhkin, Yu.L., & Skalozubov, V.I. (2003). Thermoacoustic Instability of the Coolant in the WWER Core. Odessa: TES.

    13. Foks, D.A. (1981). Hydraulic Analysis of Unsteady Flow in Pipelines. Moscow: Energoizdat.

    14. Filin, N.V. (1985). Liquid cryogenic systems. Leningrad: Mashinostroenie.

    15. Korolev, A.V. (2010). Analysis and Modelling of Heat Power Equipment Operating Two-Phase Flows. Odessa: Astroprint.

    16. Zhukovskiy, N. E. (1949). About Hydrodynamic Impact in Water Supply Systems. M.-L.: GITTL.

    17. Korolyov O.V., Zhou HuiYu (2016). Dynamic Damper Pressure Fluctuation in the Pumping Systems. Proceedings of Odessa Polytechnic University, 1(48), 35–41.

    18. Korolev, A.V., & Zhou Hui Yu (2016). Research of Dynamics at Normal Operation and Interrupted Feed of Piston Pumps. Refrigeration Engineering and Technology, 52, 52, 4–8.

    19. Bezrukov, Yu.A., Lisenkov, E.A., & Seleznev, A.V. (2009). Analysis Of Primary-Side Water Hammer For WWER-Type Reactors. Proceedings of the 6th Scientific and Technical Conferences:Safety Assur-ance of NPP with VVER, (May 26–29, 2009). Podolsk: OKB Gidropress.

    20. Mazurenko, A.S., Skalozubov, V.I., & Chulkin, O.A. et al. (2017). Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems. Problems of the Regional Energetics, 2(34).

    21. Skalozubov V.I., Chulkin O.A., & Pirkovsky D.S. (2018). Water hammer due to heat-hydrodynamic in-stability. LAP LAMBERT Academic Publishing.

  • Creative Commons License by Author(s)