Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Implementation of the linear elastic structure half-space in the Plaxis in the study of settlements

  • Authors

    Solodei I.
    Zatyliuk Gh.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2019
    Issue 1(57)
    UDC 539.3
    DOI DOI: 10.15276/opu.1.57.2019.03
    Pages 22-28
  • Abstract Numerical problem solving based on the finite element method provides for objects modeling as finite bounded region. In modelling the “underground structure – soil mass” system always arises the question of limiting the infinite half-space of the soil mass. The problem is particularly acute for choosing the lower bound of the computing model through studies of settlement. It related to the fact that values of this strain regimes will increase in proportion to increase of the model dimensions vertically. Some scientists solve this problem in the following way. Limit the calculation scheme to the depth of the compression layer, which is calculated by the method of summation of the layers. However, it is often not possible to use this recommendation because of the features of the objects being studied. Therefore, the issue of developing methods for modeling the system “underground structure-ground massif” in software complexes. The value of the settlement must be identical and independent of the model dimensions. They should also correspond to the analytical calculation. The present review is concerned with linear elastic half-space implementing procedure in the Plaxis 2D, that uses the finite element method as its theoretical basis, to study settlements, regardless of the chosen lower bound of the model. This theory is based on the method of summation of layers, which was widespread in the calculation of settlement. The alpha-coefficient provides a non-linear relationship between settlement and depth. The derived formulas and auxiliary coefficients presented in tabular form. Using these formulas and coefficients, you can find the Eincrement-value may be used, which is the increase of the Young's modulus per unit of depth and set it in the advanced features window. As well as given their practical use capability assessment in the “underground structure – soil mass” systems research in the Plaxis 2D. Settlement at different depths is in good agreement with each other.
  • Keywords underground structure, soil mass, settlement, soil model, mesh dimension, linear elastic structure half-space, finite element method
  • Viewed: 54 Dowloaded: 2
  • Download Article
  • References

    Література

    1.Солодей І.І., Затилюк Г.А. Особливості створення розрахункових моделей при дослідженні на-пружено-деформованого стану підземних споруд. Опір матеріалів і теорія споруд. 2019. Вип. 102. С. 139–150.

    2.Перельмутер А.В., Сливкер В.И. Расчетные модели сооружений и возможность их анализа. Мо-сква: СКАД СОФТ, 2011. 736 с.

    3.Бережной Д.В., Сагдатуллин М.К., Султанов Л.У. Моделирование деформирования обделки тон-неля метрополитена, расположенной в грунте сложной физической природы. Вестник Казанско-го технологического университета. 2013. № 9. С. 250–255.

    4.Петров Д.Н., Деменков П.А., Потемкин Д.А. Численное моделирование напряженного состояния в обделке колонных станций без боковых платформ. Записки Горного института. 2010. Т. 185. С. 166–170.

    5.Городецкий А.С., Евзеров И.Д. Компьютерные модели конструкций. Москва: Издательство Ас-социации строительных вузов, 2009. 360 с.

    6.Рябков С.В., Соловьев Р.А. Опыт применения программного комплекса Plaxis 3D отделом проек-тирования тоннельных строительных конструкций. Метро и тоннели. 2016. № 6. С. 53–55.

    7.Lysmer J., Kuhlemeyer R. Dynamic Model for Infinite. Journal of Engineering Mechanics Division. 1969. Vol. 95. P. 859–877.

    8.Бирбраер А. Н. Расчет конструкции на сейсмостойкость. СПб.: Наука, 1998. 255 с.

    References

    1.Solodei, I.I., & Zatyliuk, Gh.A. (2019). Features of the numerical simulation in research on the stress s-train behavior of underground structures. Strength of Materials and Theory of Structures, 102, 139–150.

    2.Perelmuter, A.V., & Slivker, V. I. (2011). Design models of structures and the possibility of their analysis. Moscow: SKAD SOFT.

    3.Berezhnoy, D.V., Sagdatullin, M.K., & Sultanov, L.U. (2013). Choosing a soil model for numerical simulation of the influence of deep excavation on the existing building. Bulletin of Kazan Technological Universit, 9, 250–255.

    4.Petrov, D.N., Demenkov, P.A., & Potemkin, D.A. (2010). Numerical modeling of the stress state in the lining of columnar stations without side platforms. Notes of the Mining Institute, 185, 166–170.

    5.Gorodetskiy, A.S., & Evzerov, I.D. (2009). Computer models of designs. Moscow: ASV.

    6.Ryabkov, S.V., & Soloviev, R.A. (2016). Experience of using the Plaxis 3D software package by the design department of tunnel building structures. Subways and tunnels, 6, 53–55.

    7.Lysmer, J., & Kuhlemeyer, R. (1969). Dynamic Model for Infinite. Journal of Engineering Mechanics Division, 95, 859–877.

    8.Birbraer, A. N. (1998). Calculation of structures for seismic resistance. SPb.: Nauka.

  • Creative Commons License by Author(s)