Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Axisymmetric stressed state of the adhesive joint of two cylindrical shells under axial tension

  • Authors

    Barakhov K.
    Dvoretskaya D.
    Kurennov S.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2019
    Issue 1(57)
    UDC 539.38
    DOI 10.15276/opu.1.57.2019.01
    Pages 5-13
  • Abstract

    The research of the deflected mode of the construction, composed of two coaxially-glued cylindrical pipes, is done. Pipes are considered as thin-walled axisymmetric shells, which are joined by adhesive layer of a certain thickness. The shearing stresses in the glue are considered to be constant over the thickness of the adhesive layer, and normal stresses are linearly dependent on the radial coordinate. The shearing stresses in the adhesive layer are considered to be proportional to the difference in the longitudinal displacements of the shell sides that are faced to the adhesive layer. Normal stresses are proportional to the difference in radial displacement of the shells. It is supposed that the change in the adhesive layer thickness under deformation does not affect the stress, that is, the linear model is considered. The problem of the joint deflected mode finding is reduced to the system of four ordinary differential equations relative to the radial and longitudinal displacements of the layers. The system is solved by the matrix method. Displacements of layers outside of the adherent area can be found by the classical theory of axisymmetric shells. Satisfaction of boundary conditions and conjugation conditions leads to a system of twenty two linear equations with twenty two unknown coefficients. The model problem is solved; the results are compared with the computation made by the finite element method. The tangential and normal stresses in the glue reach the maximum values at the edges of the adhesive line. It is shown that the proposed model describes the stressed state of the joint with high accuracy, and this joint has an influx of glue residues at the ends of the adhesive line but cannot be applied in the absence of adhesive influxes. Because in this case, the tangential stresses due to the parity rule reach maximum values not on the edge, but at some distance from the edge of the line. As a result, the distribution of normal stresses at the edge of the line also substantially changes. Thus, the proposed model with certain restrictions has sufficient accuracy for engineering problems and can be used to solve design problems.

  • Keywords adhesive joint, cylindrical axisymmetric shells, analytical solution, system of ordinary differential equations, symmetric matrices
  • Viewed: 177 Dowloaded: 16
  • Download Article
  • References

    Литература

     1.Adams R.D., Peppiatt N.A. Stress analysis of adhesive bonded tubular lap joints. The Journal of Adhe-sion. 1977. Vol. 9. P. 1–18.

     2. Dragoni E., Goglio L. Adhesive stresses in axially-loaded tubular bonded joints – Part I: Critical review and finite element assessment of published models. Int. J. of Adhesion and Adhesives. 2013. Vol. 47. P. 35–45. DOI: 10.1016/j.ijadhadh.2013.09.009.

     3.Lubkin J.L., Reissner E. Stress distribution and design data for adhesive lap joints between circular tubes. Trans. ASME. 1956. V.78. P. 1213–1221.

     4.Skoryi I.A., Terekhova L. P. Stresses in adhesive joints in cylindrical shells and panels. Polymer Me-chanics. 1972. Vol. 8(6). P. 964–972. DOI: 10.1007/BF00858340.

     5.Nemes O., Lachaud F., Mojtabi A. Contribution to the study of cylindrical adhesive joining. Interna-tional Journal of Adhesion & Adhesives. 2006. Vol. 26. P. 474–480. DOI: 10.1016/j.ijadhadh.2005.07.009.

     6.Pugno N., Carpinteri A. Tubular Adhesive Joints Under Axial Load. Journal of Applied Mechanics. 2003. Vol. 70 (6). P. 832–836. DOI: 10.1115/1.1604835.

     7.Nemes O., Lachaud F. Modeling of Cylindrical Adhesively Bonded Joints. Journal of Adhesion Science and Technology. 2009. Vol. 23. P. 1383–1393. DOI: 10.1163/156856109X432983.

     8.Esmaeel R. A., Taheri F. Stress Analysis of Tubular Adhesive Joints with Delaminated Adherend. Journal of Adhesion Science and Technology. 2009. Vol. 23. P. 1827–1844. DOI: 10.1163/016942409X12459095670511.

     9.Cognard J. Y., Devaux H., Sohier L. Numerical analysis and optimisation of cylindrical adhesive joints under tensile loads. International Journal of Adhesion and Adhesives. 2010. Vol 30(8). P. 706–719. DOI: 10.1016/j.ijadhadh.2010.07.003.

     10.Barbosa D.R., Campilho R.D.S.G., Rocha R.J.B. Experimental and numerical assessment of tensile loaded tubular adhesive joints. The Journal of Materials: Design and Applications. 2018. Vol. 0. P. 1–13. DOI: 10.1177/1464420718808543.

     11.Артюхин Ю. П. Модифицированная теория Голанда-Рейсснера склеенных пластин. Исслед. по теор. пластин и оболочек. 1975. №11. С. 136–148.

     12.Куреннов С.С. Модель двухпараметрического упругого основания в расчёте напряжённого со-стояния клеевого соединения. Труды МАИ. 2013. № 66. URL: http://trudymai.ru/published.php?ID=40246.

     13.Kurennov S.S. Longitudinal-Flexural Vibrations of a Three-Layer Rod. Аn Improved Model. Journal of Mathematical Sciences. 2016. Vol. 2. P. 159–169. DOI: 10.1007/s10958-016-2829-7.

     14.Куреннов С.С. О распределении напряжений по толщине клеевого соединения. Вопросы проек-тирования и производства конструкций летательных аппаратов. 2016. №4. C. 80–89.

     15.Wang J., Zhang C. Three-parameter elastic foundation model for analysis of adhesively bonded joints. Int. J. of Adhesion and Adhesives. 2009. V. 29. P. 495–502. DOI: 10.1016/j.ijadhadh.2008.10.002.

     16.Frostig Y., Thomsen O.T., Mortensen F. Analysis of adhesive-bonded joints, square-end, and spewfil-let-high-order theory approach. J. of Engineering Mechanics. 1999. Vol. 125. P. 1298–1307. DOI: 10.1061/(ASCE)0733-9399(1999)125:11(1298).

     References

     1.Adams, R. D., & Peppiatt, N.A. (1977). Stress analysis of dhesive bonded tubular lap joints. The Jour-nal of Adhesion, 9, 1–18.

     2. Dragoni, E., & Goglio, L. (2013). Adhesive stresses in axially-loaded tubular bonded joints - Part I: Critical review and finite element assessment of published models. Int. J. of Adhesion and Adhesives, 47, 35–45. DOI: 10.1016/j.ijadhadh.2013.09.009.

    3. Lubkin, J.L., & Reissner, E. (1956). Stress distribution and design data for adhesive lap joints between circular tubes. Trans. ASME, 78, 1213–1221.

    4. Skoryi, I.A., & Terekhova, L. P. (1972). Stresses in adhesive joints in cylindrical shells and panels. Pol-ymer Mechanics, 8(6), 964–972. DOI: 10.1007/BF00858340.

    5. Nemes, O., Lachaud, F., & Mojtabi, A. (2006). Contribution to the study of cylindrical adhesive joining. International Journal of Adhesion & Adhesives, 26, 474–480. DOI: 10.1016/j.ijadhadh.2005.07.009.

    6. Pugno, N., & Carpinteri, A. (2003). Tubular Adhesive Joints Under Axial Load. Journal of Applied Me-chanics, 70 (6), 832–836. DOI: 10.1115/1.1604835.

    7. Nemes, O., & Lachaud, F. (2009). Modeling of Cylindrical Adhesively Bonded Joints. Journal of Adhe-sion Science and Technology, 23, 1383–1393. DOI: 10.1163/156856109X432983.

    8. Esmaeel, R. A., & Taheri, F. (2009). Stress Analysis of Tubular Adhesive Joints with Delaminated Ad-herend. Journal of Adhesion Science and Technology, 23, 1827–1844. DOI: 10.1163/016942409X12459095670511.

    9. Cognard, J.Y., Devaux, H., & Sohier, L. (2010). Numerical analysis and optimisation of cylindrical ad-hesive joints under tensile loads. International Journal of Adhesion and Adhesives, 30(8), 706–719. DOI: 10.1016/j.ijadhadh.2010.07.003.

    10. Barbosa, D.R., Campilho, R.D.S.G., & Rocha, R.J.B. (2018). Experimental and numerical assessment of tensile loaded tubular adhesive joints. The Journal of Materials: Design and Applications, 0, 1–13. DOI: 10.1177/1464420718808543.

    11. Artyukhin, Yu.P. (1975). Goland-Reissner modified theory of glued plates. Issled. po teor. plastin i ob-olochek, 11, 136–148.

    12. Kurennov, S.S. (2013). The two-parameter elastic foundation model used for the computation of the glued connection stressed state. Trudy MAI, 66. Retrieved from: http://trudymai.ru/published.php?ID=40246.

    13. Kurennov, S.S. (2016). Longitudinal-Flexural Vibrations of a Three-Layer Rod. Аn Improved Model. Journal of Mathematical Sciences, 2, 159–169. DOI: 10.1007/s10958-016-2829-7.

    14. Kurennov, S.S. (2016). O raspredelenii napryazhenij po tolshhine kleevogo soedineniya. Voprosy proektirovaniya i proizvodstva konstrukczij letatelnykh apparatov, 4, 80–89.

    15. Wang, J., & Zhang, C. (2009). Three-parameter elastic foundation model for analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives, 29, 495–502. DOI: 10.1016/j.ijadhadh.2008.10.002.

    16. Frostig, Y., Thomsen, O. T., & Mortensen, F. (1999). Analysis of adhesive-bonded joints, square-end, and spewfillet-high-order theory approach. Journal of Engineering Mechanic, 125, 1298–1307. DOI: 10.1061/(ASCE)0733-9399(1999)125:11(1298).

  • Creative Commons License by Author(s)