Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Efficiency of use of a hybrid solar collector

  • Authors

    Wysochin Viktor V.
    Verstak Mykola

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2018
    Issue 2(55)
    UDC 662.997+697.7
    DOI 10.15276/opu.2.55.2018.07
    Pages 66-71
  • Abstract

    Numerical researches of a hybrid solar collector (HSC) at electric and thermal energy generation are conducted. Mathematical model allows to analyse operating parameters of a HSC – heating temperature and productivity depending on external conditions and influence of a thermal mode on indicators of HSC work. The purpose of the study – identification of rational thermal operating modes of a hybrid solar collector taking into account effective electrical and heating
    capacity. The research method consisted in creation and analysis of complex mathematical model of a hybrid solar collector under real conditions of a dynamic solar and climatic situation. It is shown that the greatest profitability possesses the variant with absorber temperature of 20 °С and a thermal pump. Slightly lower is the profit of using combined thermal modes (20/35) °С, which from the technical point of view is the most efficient one. The 50 ºС alternative, in which the thermal pump is not used, loses to other designs with heat removal. The lowest profitability is in the “without absorber cooling” alternative. Necessity of maintenance of absorber temperature at the level of 20…35 °С is shown, using the transformer of heat on conditions of effective operation at stable satisfaction of needs in electric and thermal
    energy with positive technical and economic effect. It is offered to operate in a differentiated thermal operating mode of HSC at different levels in the summer (35 °С) and winter (20 °С) time. The mathematical model for the description of a thermal operating mode of a hybrid solar collector in the conditions of forced cooling is proposed. Well-founded recommendations about conducting an operating mode of the hybrid solar collector interfaced to the thermal pump at year-round operation are made.

     

     

  • Keywords hybrid solar collector, solar system with thermal pump, thermal mode
  • Viewed: 132 Dowloaded: 1
  • Download Article
  • References

     

    1. Гибридные солнечные коллекторы PVT. 2013. URL: http://solarsoul.com.ua/gibridnye-solnechnyekollektory
    (дата звернення 22.12.2017).
    2. Севела П., Олесен Б. Гибридный солнечный коллектор. Здания высоких технологий. 2013. № 2.
    C. 90–97.
    3. Харченко В.В., Никитин Б.А., Тихонов П.В., Макаров А.Э. Теплоснабжение с ипользованием
    фотоэлектрических модулей. Техника в сельском хозяйстве. 2013. № 5. C. 11–12.
    4. Akhatov J.S. Yuldoshev I.A., Halimov A.S. Study of thermal–technical parameters and experimental
    investigations on PV – Thermal collector. International Journal of Engineering and Advanced Research
    Technology (IJEART). July 2015. Vol. 1, Issue 1. P. 71–75.
    5. Харченко В.В., Никитин Б.А., Беленов А.Т., Тихонов П.В. Повышение эффективности энергетиче-
    ских установок на базе тепловых фотоэлектрических модулей. Наук. вісник НУБІП України. Series:
    Техніка та енергетика АПК. 2014. № 194, Part 3. C. 45–51.
    6. Тихонов П.В., Харченко В.В. Системы энергоснабжения на основе когенерационных фотоэлектри-
    ческих и тепловых модулей и тепловых насосов. Труды 7-й межд.науч.конф. Part 4. Возобновляемые
    источники энергии. Местные энергоресурсы. Экология. М. : ГНУ ВИЭСХ. 2010. C. 275–279.
    7. Сабирзянов, Т.Г., Кубкин М.В., Солдатенко В.П. Математическая модель фотобатареи как ис-
    точника электрической энергии. Техніка в сільскогосподарському виробництві. 2012. Issue 25.
    Part1. P. 331–335.
    8. Нікульшин В.Р. Височин В.В., Нетрадиційні джерела енергії: навч. посіб. Одеса : КПЦ Білка,
    2016. 208 с.
    9. Высочин, В.В. Математическая модель гелиосистеми с сезонным аккумулятором тепла. Праці
    Одеського політехнічного університету. 2011. Issue 2 (36). C. 125–129.
     


    1. Hybrid solar collectors PVT. (2013). Retrived from: http://solarsoul.com.ua/gibridnye–solnechnye–
    kollektory.
    2. Sevela, P., & Olesen, B. (2013). Hybrid solar collector. High-tech buildings, 2, 90–97.
    3. Harchenko, V.V., Nikitin, B.A., Tihonov, P.V., & Makarov, A.E. (2013). Heat supply using photovoltaic
    modules. Techniques in agriculture, 5, 11–12.
    4. Akhatov, J.S. (2015). Study of thermal–technical parameters and experimental investigations on PVThermal
    collector. International Journal of Engineering and Advanced Research Technology (IJEART),
    71–75.
    5. Harchenko, V.V., Nikitin, B.A., Belenov, A.T., & Tihonov, P.V. (2014). Improving the efficiency of
    power plants based on thermal photovoltaic modules. Scientific Vestnik NUBIP of
    Ukraine. Ser.: Technique and energetic of AIC, 194 (4), 45–51.
    6. Tihonov, P.V., & Harchenko, V.V. (2010). Energy systems based on cogeneration photovoltaic and
    thermal modules and heat pumps. Proceedings of the 7th international scientific conference.
    Part 4. Renewable energy sources. Local energy. Ecology, 275–279.
    7. Sabirzjanov, T.G., Kubkin, M.V., & Soldatenko, V.P. (2012). Mathematical model of photo battery as a
    source of electrical energy. Techniques in agricultural production, 25 (1), 331–335.
    8. Nikulchin, V.R., & Wysochin, V.V. (2016). Unconventional energy sources. Odesa: KPZ Bilka.
    9. Wysochin, V.V. (2011). Mathematical model of solar systems with a seasonal heat accumulator.
    Proceedings of Odessa Polytechnic University, 2(36), 125–129.

  • Creative Commons License by Author(s)