Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Increasing long-term strength of Zr-1%Nb alloy by diffusive hardening of near-surface layer

  • Authors

    Voyevodin Victor
    Trush Vasyl
    Fedirko Viktor
    Luk’yanenko Alexander
    Stoev Petro

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2018
    Issue 2(55)
    UDC 669.296:621.785.062
    DOI 10.15276/opu.2.55.2018.06
    Pages 59-65
  • Abstract

    Zirconium alloys are widely used as structural material in nuclear industry for fabrication of nuclear fuel claddings (NFC). The operational reliability of these structures is an important element of reliability of the entire fuel cycle, given that the structures operate at elevated temperatures. The development of finishing thermochemical treatment modes of Zr-1%Nb alloy NFC is an important and actual task in the field of materials science of zirconium and its alloys. The aim of the work is to determine the influence of thermal treatment in various controlled gas media (vacuum, oxygen-containing, nitrogen-containing) on the long-term strength of the Zr-1%Nb alloy samples at 380 °C in air. The experimental material is 3 mm ring-samples with a 0.5 mm depth V-shaped concentrator, which are cut from NFC tubes of the Zr-1%Nb alloy of Ukrainian production. In order to test long-term strength of Zr-1%Nb alloy ringsamples at T=380 °C in air a multipositional assembly was used. The assembly was designed and manufactured in the Karpenko Physico-Mechanical institute of the National Academy of Sciences of Ukraine. Special grips were developed and produced for mounting ring-samples on a long-term strength test. Thermochemical treatment was conducted in a rarefied (P=1·10–4 mm Hg) gas medium (vacuum), as well as in rarefied oxygen- and nitrogen-containing gas media at temperature T=580...650 °C and at the exposure =3...10 h. The influence of oxidation, nitration and vacuum treatment on thickness and microhardness of surface layers of zirconium ring-samples, as well as resistance to delayed failure under a static long-term load are studied experimentally. Also it has been experimentally established that the treatment of zirconium ring-samples of the Zr-1%Nb alloy in oxygen-containing and nitrogen-containing gas media with respect to vacuum annealing raises the destructive stresses with a prolonged static load at a temperature of 380 °C in air. The differences in fracture surface of nearsurface layer of the Zr-1%Nb alloy ring-samples, depending on the processing mode, are shown in the paper.

     

     

  • Keywords zirconium, thermochemical treatment, oxygen, nitrogen, near-surface layer, long-term strength
  • Viewed: 126 Dowloaded: 6
  • Download Article
  • References

     

    1. Lemaignan C., Motta A.T. Zirconium Alloys in Nuclear Applications. Materials Science and
    Technology. 2006. P. 2–51. DOI: https://doi.org/10.1002/9783527603978.mst0111.
    2. Nuclear corrosion science and engineering. Edited by Damien Feron. Woodhead Publishing Limited.
    2012. P. 1061.
    3. Тарараева Е.М., Муравьева Л.С. Влияние кислорода и олова на механические свойства сплавов
    циркония с 1 и 2,5 % Nb. Строение и свойства сплавов для атомной энергетики. / под ред. О.С.
    Иванова, Т.А. Бабаева. М. : Наука, 1973. С. 158–172.
    4. Войтович Р.Ф. Окисление циркония и его сплавов. Киев : «Наукова думка», 1989, 288 с.
    5. Физическое материаловедение: Учебник для вузов: в 6 т./ под общей ред. Б.А. Калина. Т. 6.
    Часть 1. Конструкционные материалы ядерной техники/ ред. Б.А. Калин, П.А. Платонов, И.И.
    Чернов, Я.И. Штромбах. М.: МИФИ, 2008. 672 с.
    6. Вахрушева В.С., Коленкова О.А., Сухомлин Г.Д. Влияние содержания кислорода на
    пластичность, повреждаемость и параметры акустической эмиссии металла труб из сплава
    Zr-1%Nb. Вопросы атомной науки и техники. Серия: Физика радиационных повреждений и
    радиационное материаловедение (88). 2005. №5. С. 104–109.
    7. Черняева Т.П., Стукалов А.И., Грицина В.М. Влияние кислорода на механические свойства
    циркония. Вопросы атомной науки и техники. Серия: Вакуум, чистые материалы,
    сверхпроводники (12). 2002. №1. С. 96–102.
    8. Чернов И.И., Калин Б.А., Бинюкова С.Ю., Стальцов М.С. Влияние легирования и термической
    обработки на структуру и свойства циркония. Учебное пособие. М. : МИФИ, 2007. 84 с.
    9. Martin Steinbrilck, Mirco Gross. Deviations from parabolic kinetics during oxidation of zirconium
    alloys. Zirconium in the Nuklear indusrry, 17th International Symposium on Zirconium in the Nuclear
    Industry on February 3–7, 2013 in Hyderabad, India, P. 979–1001. DOI: 10.1520/ STP154320130022.
    10. Selmi Noureddine, Sari Ali. Study of Oxidation Kinetics in Air of Zircaloy-4 by in Situ X-Ray
    Diffraction. Advances in Materials Physics and Chemistry. 2013. Vol.3 No.2. С. 168–173. DOI:
    10.4236/ampc.2013.32023.
    11. Gribaudo L., Arias D., Abriata J. The N-Zr (Nitrogen-Zirconium) system. Journal of Phase Equilibria.
    1994. Vol. 15, No. 4. P. 441–449.
    12. Nikulin S.A., Rozhnov A.B., Gusev A.Yu. et al. Fracture resistance of Zr-Nb alloys under low-cycle
    fatigue tests. Journal of Nuclear Materials. 2014. Vol. 446, Is.1–3. P. 10–14. DOI:
    https://doi.org/10.1016/j.jnucmat.2013.11.039.
    13. Lee D., Hill P.T. Effect of oxygen on the fatigue behavior of Zircaloy. Journal of Nuclear Materials.
    1976. Vol. 60. P. 227–230.
    14. Ажажа В.М. , Борц Б.В., Бутенко І.М. та ін. Виробництво партії трубних заготовок трекс-труб та
    виготовлення дослідно-промислової партії твельних труб зі сплаву Zr-1Nb із вітчизняної
    сировини. Наука та інновації. 2006. Т. 2, №6. С. 18–30. DOI: 10.15407/scin2.06.018.
    15. Birchley Jonathan & Leticia Fernandez-Moguel. Simulation of air oxidation during a reactor accident
    sequence: Part 1 – Phenomenology and model development. Annals of Nuclear Energy. 2012. 40. 163–
    170. DOI: https://doi.org/10.1016/j.anucene.2011.10.019.
     


    1. Lemaignan, C., & Motta, A.T. (2006). Zirconium Alloys in Nuclear Applications. Materials Science
    and Technology, 2–51. DOI: https://doi.org/10.1002/9783527603978.mst0111.
    2. Damien, Feron (Eds.). (2012). Nuclear corrosion science and engineering. Woodhead Publishing
    Limited. P. 1061.
    3. Tararaeva, E.M., & Murav’eva, L.S. (1973). Effect of oxygen and tin on the mechanical properties of
    zirconium alloys with 1 and 2.5 % Nb. Structure and properties of alloys for nuclear power
    engineering. Moscow: Nauka.
    4. Voitovich, R.F. (1989). Oxidation of zirconium and its alloys. Kiev: Science dumka.
    5. Kalin, B.A., Platonov, P.A., Chernov, I.I., & Strombakh, Ya.I. (2008). Physical Material Science. 6.
    Part 1. Structural materials of nuclear engineering. Moscow: MIFI.
    6. Vakhrusheva, V.S., Kolenkova, O.A., & Sukhomlin, G.D. (2005). Effect oxygen content on plasticity,
    damage and acustic emission parameters of Zr-1%Nb tubes. Problems of Atomic Science and
    Technology. 5(88). 104–109.
    7. Chernyaeva, T.P., Stukalov, A.I., & Gritsina, V.M. (2002). Effect of oxygen on the mechanical
    properties of zirconium. Problems of Atomic Science and Technology. 1(12). 96–102.
    8. Chernov, I.I, Kalin, B.A., Binyukova, S.Yu., & Staltsov M.S., (2007). Effect of alloying and heat
    treatment on the structure and properties of zirconium: a textbook. Moscow: MEPhI.
    9. Steinbrilck, M., & Gross, V. (2014). Deviations from parabolic kinetics during oxidation of zirconium
    alloys .Zirconium in the Nuklear indusrry: 17th International Symposium on Zirconium in the Nuclear
    Industry on February 3–7, Hyderabad, India. P. 979-1001. DOI: 10.1520/STP154320130022.
    10. Selmi Noureddine, Sari Ali. (2013). Study of Oxidation Kinetics in Air of Zircaloy-4 by in Situ X-Ray
    Diffraction. Advances in Materials Physics and Chemistry, 3, 2, 168–173. DOI:
    10.4236/ampc.2013.32023.
    11. Gribaudo, L., Arias, D., & Abriata, J. (1994). The N-Zr (Nitrogen-Zirconium) system. Journal of Phase
    Equilibria, 4(15), 441–449.
    12. Nikulin, S.A., Rozhnov, A.B., & Gusev, A.Yu., et al. (2004). Fracture resistance of Zr-Nb alloys under
    low-cycle fatigue tests. Journal of Nuclear Materials, 446, 1–3, 10–14. DOI:
    https://doi.org/10.1016/j.jnucmat.2013.11.039.
    13. Lee, D., & Hill, P.T. (1976). Effect of oxygen on the fatigue behavior of Zircaloy. Journal of Nuclear
    Materials, 60, 227–230.
    14. Azhazha, В.М., Borts, B.V., & Butenko, І.М. et al. (2006). Production of the party of round billets for
    trex-pipes and making of the experimental industrial party of pipes from Zr1Nb alloy from domestic
    raw materials. Science and Technology, 2(6), 18–30. DOI: 10.15407/scin2.06.018.
    15. Birchley, J., & Leticia, F-M. (2012). Simulation of air oxidation during a reactor accident sequence:
    Part 1 – Phenomenology and model development. Annals of Nuclear Energy, 40, 163–170. DOI:
    10.1016/j.anucene.2011.10.019.

  • Creative Commons License by Author(s)