Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Thermodynamic of obtaining of monodisperse particles SiO2 by tetraethoxysilane hydrolysis in the Si-OH-C-N system.

  • Authors

    Musov О.
    Kayun I.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2018
    Issue 1(54)
    UDC 661.682
    DOI 10.15276/opu.1.54.2018.10
    Pages 74-78
  • Abstract

    The problem of synthesizing of mono disperse SiO2 particles with hydrolysis (C2H5O)4Si by the Stober method is described. The purpose of the study is to determine the conditions for the passage of this reaction in a water-ammonia-alcohol medium, at which the maximum concentration of the solid phase of SiO2 and the minimum concentration of silicon ion compounds in solution are reached. By thermodynamic modeling the composition of the Si-O-H-C-N system under thermodynamic equilibrium for various given conditions was studied. The maximum amount of solid phase SiO2 at different initial concentrations (C2H5O)4Si is achieved at an initial concentration of C2H5OH more than 1.2 mol/l, the concentration of the solid phase of SiO2 is proportional to the initial concentration (C2H5O)4Si. Thermodynamic studies show that a change in the reaction temperature from 1 to 70 C does not affect the concentration of ionic silicon compounds in the solution and the solid phase of SiO2. The obtained results reduce the search for optimal conditions for the production of monodisperse particles of SiO2 and allow a deeper understanding of the processes taking place in the Si-O-H-C-N system.

  • Keywords thermodynamics, Stober method, hydrolysis of tetraethoxysilane
  • Viewed: 171 Dowloaded: 1
  • Download Article
  • References

    Література

     

    1. Photonic crystal microspheres/ A.A. Zhokhov et al. Optical Materials. 2015. Vol. 49. Р. 208–212.

    2. Stöber silica particles as basis for redox modifications: particle shape, size, polydispersity, and porosity/ N. Plumere et al. Journal of Colloid and Interface Science. 2012. Vol. 368, № 1. PР. 208–219.

     3. Фролов Ю.Г. Теоретические основы синтеза гидрозолей кремнезема. Получение и применение гидрозолей кремнезема. Труды Моск. хим.-техн. ин-та им. Д.И. Менделеева. 1979. №. 107. С. 3–20.

     4. Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid/ T.M. Arantes et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2012. № 415. Р. 209–217.

     5. Tadanaga K., Morita K., Mori K., Tatsumisago, M. Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process. Journal of Sol-Gel Science and Technology. 2013. № 68 (2). P. 341–345.

     6. Theoretical Study of the Thermochemistry of Molecules in the Si-O-H System/ Mark, D., et al. J. Phys. Chem. 1995. № 99. Р. 15285–15293.

     7. First-Principles Thermochemistry for Silicon Species in the Decomposition of Tetraethoxysilane/ Phadungsukanan W. et al. J. Phys. Chem. A. 2009. Vol.13, № 31. Р 9041–9049.

     8. Масалов В.М., Сухинина Н.С., Омельченко Г.А. Наноструктура частиц диоксида кремния, полученных многоступенчатым методом штобера-финка-бона. Хімія, фізика та технологія поверхні. 2011. Т. 2, № 4. С. 373–384.

    References

    1. 1. Zhokhov A.A., Masalov V.M., & Sukhinina N.S. (2015). Photonic crystal microspheres. Optical Materials, 49, 208–212.

     2. Plumere N., Ruff A., & Speiser B. (2012). Stöber silica particles as basis for redox modifications: particle shape, size, polydispersity, and porosity. Journal of Colloid and Interface Science, 368(1), 208–219.

     3. Frolov Yu.G. (1979). Theoretical foundations for the synthesis of silica hydrosols. Preparation and use of silica hydrosols. Proceedings of Moscow. chem.-tech. institute of D.I. Mendeleyev, 107, 3–20.

     4. Arantes T.M., Pintoa A.H., & Leitea E.R. (2012). Synthesis and optimization of colloidal silica nanoparticles and their functionalization with methacrylic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 415, 209–217.

     5. Tadanaga K., Morita K., Mori K., & Tatsumisago M. (2013). Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process. Journal of Sol-Gel Science and Technology, 68(2), 341–345.

     6. Mark D., Melius A.F., Melius C.F., Ho P., & Zachariah M.R. (1995). Theoretical Study of the Thermochemistry of Molecules in the Si-O-H System. J. Phys. Chem., 99, 15285–15293.

     7. Phadungsukanan W., Shekar S., & Shirley R. (2009). First-Principles Thermochemistry for Silicon Species in the Decomposition of Tetraethoxysilane. J. Phys. Chem. A., 13(31), 9041–9049.

     8. Masalov V.M., Sukhinina N.S., & Omelchenko G.A. (2011). The nanostructure of silicon dioxide particles obtained by the multi-step Stober-Finqa-Bon method. Chemistry, physics and surface technology, 2(4), 373–384.

  • Creative Commons License by Author(s)