Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Calculation of the phases coexistence spaces in the system Hg-Mn-Te-Se

  • Authors

    Kazakov A. I.
    Burtnyi D.
    Shapovalov G.

  • Subject

    ELECTRONICS. RADIO ENGINEERING. TELECOMMUNICATION FACILITIES

  • Year 2018
    Issue 1(54)
    UDC 004.94:621.315.592
    DOI 10.15276/opu.1.54.2018.09
    Pages 69-73
  • Abstract

    Based on the regular solution model and the standard thermodynamic functions used to describe the properties of binary states and the interaction of atoms in four-component solid solutions, the higher derivatives of the free energy of the homogeneous solid solution Hg1–xMnxTe1–ySey from the second through the eighth inclusive were calculated. Analytical expressions for the derivatives, numerical calculations and determination of the zero contours of higher derivatives were carried out on the basis of a differential topological approach using the computer mathematics system of Maxima. The sections of the phase diagram of the solid solution Hg1–xMnxTe1–ySey, the critical spaces and the coexistence spaces of phases for different temperatures were calculated. The obtained simulation results show the possibility of formation the coexistence of second-order phases regions in solid solutions Hg1–xMnxTe1–ySey.

  • Keywords solid solutions, coexistence spaces of phases, multicomponent systems, computer simulation, higher derivatives, free Gibbs energy
  • Viewed: 233 Dowloaded: 0
  • Download Article
  • References

    Література

    1. Sorokin V.S., Sorokin S.V., Kaygorodov V.A., Ivanov S.V. The Instability and Immiscibility Regions in MgxZn1-xSySe1-y alloys. J. Cryst. Growth. 2000. Vol. 214/215, P. 130–134.

    2. Maksimov O., Guo S.P., Tamargo M.C. Be-Chalcogenide alloys for improved R-G-B LEDs: Be[x]Zn[y]Cd[1-x-y]Se on InP. Phys. Stat. Sol. 2002. Vol. 229(b), 2. P. 1005–1009.

    3. Temperature dependence of the band-edge transitions of ZnCdBeSe / C.H. Hsieh, Y.S.Huang, C.H. Ho et al. Jpn. J. Appl. Phys. 2004. Vol. 43(2). P. 459–466.

    4. Far-infrared and Raman spectroscopy of Cd1-xMnxTe1-ySey: Phonon properties / N. Romcevic, M. Romcevic, A. Golubovic et al. Journal of Alloys and Compunds. 2005. Vol. 397. P. 52–57.

    5. Optical Properties of Hg1-xMnxTe1-ySey / M. Romcevic, V.A. Kulbachinskii, N. Romcevic et al. Infrared Physics & Technology. 2005. Vol. 46. P. 379–387.

    6. Kazakov A., Kvatashidze L., Shapovalov G. Computer modeling of critical coexistance spaces at phase diagrams of multicomponent solid solution. Informatics and Mathematical Methods in Simulation. 2014. Vol. 4, №4. P. 349–356.

    7. Казаков А., Шаповалов Г. Моделирование областей сосуществования фаз в твердых растворах In xGa1-xAsyР1-y с использованием различных термодинамических моделей. Технічні науки та технології. 2016. Т. 5, №3. С. 96–103.

    8. Корн Г., Корн Т. Справочник по математике. Москва : Наука, 1974. 832 с.

    9. Система компьютерной алгебры Maxima. Maxima, a Computer Algebra System. URL: http://maxima.sourceforge.net (Дата звернення: 10.09.2017).

    References

    1. Sorokin V.S., Sorokin S.V., Kaygorodov V.A., & Ivanov S.V. (2000). The Instability and Immiscibility Regions in MgxZn1-xSySe1-y alloys. J. Cryst. Growth., 214/215, 130–134.

    2. Maksimov O., Guo S.P., & Tamargo M.C. (2002). Be-Chalcogenide alloys for improved R-G-B LEDs: Be[x]Zn[y]Cd[1-x-y]Se on InP. Phys. Stat. Sol., 229(b), 2, 1005–1009.

    3. Hsieh C.H., Huang Y.S., & Ho, C.H. et al. (2004). Temperature dependence of the band-edge transitions of ZnCdBeSe. Jpn. J. Appl. Phys., 43, 2, 459–466.

    4. Romcevic N., Romcevic M., & Golubovic A. et al. (2005). Far-infrared and Raman spectroscopy of Cd1-xMnxTe1-ySey: Phonon properties. Journal of Alloys and Compunds, 397, 52–57.

    5. Romcevic M., Kulbachinskii V.A., & Romcevic N. et al. (2005). Optical Properties of Hg1-xMnxTe1-ySey. Infrared Physics & Technology, 46, 379–387.

    6. Kazakov A., Kvatashidze L., & Shapovalov G. (2014). Computer modeling of critical coexistance spaces at phase diagrams of multicomponent solid solution. Informatics and Mathematical Methods in Simulation, 4, 4, 349–356.

    7. Kazakov A., & Shapovalov G. (2016). Simulation of the regions of phase coexistence in InxGa1-xAsyP1-y solid solutions using various thermodynamic models. Technical sciences and technologies, 5, 3, 96–103.

    8. Kornn G., & Korn T. (1974). Handbook on mathematics. Мoscow: Nauka.

    9. Computer Algebra System. Maxima. Maxima, a Computer Algebra System. Retrieved from http://maxima.sourceforge.net.

  • Creative Commons License by Author(s)