Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    The possibilities of increasing the reliability and durability of a cylindrical group by technological methods

  • Authors

    Usov Аnatoly Vasyl’ovych
    Kunitsyn M.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2018
    Issue 1(54)
    UDC 536:621.9 (075.8)
    DOI 10.15276/opu.1.54.2018.04
    Pages 26-35
  • Abstract

    The possibilities of increasing the reliability and durability of a cylindrical group by technological methods, in particular, the use of coatingsfrom wear-resistant materials on the working surfaces of cylinders are considered. Finishing methods of processing products with wearresistant coatings lead to the formation of defects on the surfaces to be treated, which reduce the performance characteristics of these products. An analysis of the causes of the formation and cracking on the surfaces of these products showed that the appearance of these defects is associated with the thermal processes accompanying the machining. In this case, it is necessary to take into account the influence of the structural heterogeneity of the workpiece layer on the mechanism of nucleation and development of defects such as cracks under the influence of thermomechanical processes accompanying diamond-abrasive processing. An analytical model has been developed to determine the thermomechanical state of the working surface of a cylinder with a wear-resistant coating that has areas of partial delamination during application. Tribocorrosive studies of composite materials based on Ni/Ni-TiO obtained by electrochemical deposition are carried out.

  • Keywords reliability, durability, tribocorrosion, wear resistance, detachment, thermomechanical processes, diamond-abrasive processing
  • Viewed: 232 Dowloaded: 7
  • Download Article
  • References

    Література

    1. Гаркунов Д.Н., Корник П.И. Виды трения и износа. Эксплуатационные повреждения деталей машин : монография. Москва : Издательство МСХА, 2003. 343 c.

    2. Ueda T., Hosokawa A., Yamamoto A. Measurement of grinding temperature using infrared radiation pyrometer with optical fiber. Journal of Engineering for Industry. 1986. Т. 108. №. 4. P. 247–251.

    3. Усов А.В., Батырев А.А. Математическое моделирование процессов контроля покрытий элементов конструкций на базе сингулярных интегральных уравнений. Проблемы машинострения. 2010. Т. 13, № 1. С. 65–75.

    4. Оборский Г.А., Дащенко А.Ф., Усов А.В., Дмитришин Д.В. Моделирование систем : монография. Одесса : Астропринт, 2013. 664 с.

    5. Балохонов Р.Р. Поверхностные слои и внутренние границы раздела в гетеолгенных материалах : монография / отв. ред. В.Е. Панин. Новосибирск : Изд-во СО РАН, 2006. 520 с.

    6. Якимов А.В., Слободяник П.Т., Усов А.В. Теплофизика механической обработки. Киев Одесса : Лыбидь. 1991. 240 с.

    7. Попов Г.Я. Концентрация упругих напряжений возле штампов разрезов тонких включений и подкреплений. Москва : Наука, 1982. 344 с.

    8. Градштейн И.С., Рыжик И.М. Таблицы интегралов, рядов и произведений : монография. 7-е изд., пер. с англ. / науч. ред.: Алан Джеффри, Даниэль Цвиллингер. Санкт-Петербург : БХВПетербург, 2011. 1232 с.

    9. Сторожев В.П. Причины и закономерности постепенных отказов основных триботехнических объектов энергетической системы судна и повышение их ресурса. Одесса : Сторожев ВП. 2001. 341 с.

    10. Sun Y., Flis-Kabulska I., Flis J. Corrosion behaviour of sediment electro-codeposited Ni–Al2O3 composite coatings. Materials Chemistry and Physics. 2014. Т. 145. №. 3. P. 476–483.

    11. Aruna S.T., Grips V.K.W., Rajam K.S. Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties. Journal of Alloys and Compounds. 2009. Т. 468. №. 1–2. P. 546–552.

    12. Chen L., Wang L., Zeng Z., Xu T. Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings. Surface and Coatings Technology. 2006. Т. 201. №. 3–4. P. 599–605.

    13. Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film/ Kim K.T. et al. Applied Surface Science. 2017. Т. 415. P. 104–108.

    14. Kalpakjian S., Schmid S.R. Manufacturing engineering and technology. Upper Saddle River, NJ, USA : Pearson, 2014. 913 p.

    15. Левченко А.А. Влияние технологической наследственности при производстве запасных частей на наводораживание деталей и их износостойкость. Проблеми техніки. 2006. № 2. С. 23–28.

    16. Kunitsyn M.V., Usov A.V. Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. Сучасні техноглогії в машинобудуванні. Харків, 2017. Вип. 12. С. 61–70.

    References

    1. Garkunov D.N., & Kornik P.I. (2003). Types of friction and wear. Operational damage to machine parts. Moscow : ICAA Publishing.

    2. Ueda T., Hosokawa A., & Yamamoto A. (1986). Measurement of grinding temperature using infrared radiation pyrometer with optical fiber. Journal of Engineering for Industry, 108(4), 247–251. DOI:10.1115/1.3187074.

    3. Usov A.V., & Batyrev A.A. (2010). Mathematical modeling of control processes of coatings of structural elements on the basis of singular integral equations. Problems of Mechanical Engineering, 13(1), 65–75.

    4. Oborskiy G.A., Dashchenko A.F., Usov A.V., & Dmitrishin D.V. (2013). Modeling of systems. Odessa: Astroprint.

    5. Balokhonov R.R. (2006). Surface layers and internal interfaces in heterogeneous materials. Moscow: SB RAS Publishing.

    6. Yakimov A.V., Slobodyanik P.T., & Usov A.V. (1991). Thermophysics of machining. Kiev, Odessa: Lybid.

    7. Popov G.Ya. (1982). The concentration of elastic stresses near stamps, cuts, thin inclusions and reinforcements. Moscow: Nauka.

    8. Gradshtein I.S., & Ryzhik I.M. (2011). Tables of integrals, series and products. St. Petersburg: BHVPetersburg.

    9. Storozhev V.P. (2001). Causes and patterns of gradual failures of the main tribotechnical objects of the ship's energy system and increase of their resource. Odessa: Storozhev VP.

    10. Sun Y., Flis-Kabulska I., & Flis J. (2014). Corrosion behaviour of sediment electro-codeposited Ni– Al2O3 composite coatings. Materials Chemistry and Physics, 145(3), 476–483.

    11. Aruna S.T., Grips V.W., & Rajam K.S. (2009). Ni-based electrodeposited composite coating exhibiting improved microhardness, corrosion and wear resistance properties. Journal of Alloys and compounds, 468(1–2), 546–552.

    12. Chen L., Wang L., Zeng Z., & Xu T. (2006). Influence of pulse frequency on the microstructure and wear resistance of electrodeposited Ni–Al2O3 composite coatings. Surface and Coatings Technology, 201(3-4), 599–605.

    13. Kim K.T., Kim D.W., Kim S.H., Kim C.K., & Choi Y.J. (2017). Synthesis and improved explosion behaviors of aluminum powders coated with nano-sized nickel film. Applied Surface Science, 415, 104–108.

    14. Kalpakjian S., & Schmid S.R. (2014). Manufacturing engineering and technology. Upper Saddle River, NJ, USA: Pearson.

    15. Levchenko A.A. (2006). The influence of technological heredity in the production of spare parts for the hydrogenation of parts and their wear resistance. Problems of Engineering, 2, 23–28.

    16. Kunitsyn M.V., & Usov A.V. (2017). Tribocorrosion research of NI-Al2O3/TIO2 composite materials obtained by the method of electrochemical deposition. Modern Technologies In Mechanical Engineering

  • Creative Commons License by Author(s)