Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Transmission and diffraction of impulse waves in foam media with cavities

  • Authors

    Mikulich Olena A.
    Shvab'yuk V.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2018
    Issue 1(54)
    UDC 539.3
    DOI 10.15276/opu.1.54.2018.03
    Pages 18-25
  • Abstract

    Widespread use of foam materials in construction, which makes it possible to significantly reduce the cost and facilitate construction, caused increasing interest in the development of methods studying the stress state of such materials during action of various dynamic loads triggered by technological and mechanical influences. Research of transmission of waves that arises from the effects of such influences will give an opportunity to more accurately assess the strength of such structural elements and the effectiveness of their use. The aim of the work is to develop a method for studying the transmission and diffraction of elastic impulses in foam materials with tunnel cavities of an arbitrary cross-section. In order to solve the problem the boundary integral equations method was used together with the time Fourier transform, which made it possible to obtain integral equations in a complex form for the Cosserat pseudo-continuum. Using the developed approach the research of transmission and diffraction of weak shock waves on tunnel cavities in foam media was carried out based on the analysis of fields of dynamic and radial stresses.

  • Keywords foam media, non-stationary problem, wave diffraction
  • Viewed: 111 Dowloaded: 2
  • Download Article
  • References

    Література

    1. Anderson W.B., Lakes R.S. Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. of Mater. Sci. 1994. Vol. 29. P. 6413–6419.

    2. Lakes R. Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum models for materials with microstructure. 1995. 1. PP. 1–22.

    3. Rueger Z., Lakes R.S. Experimental Cosserat elasticity in open-cell polymer foam. Philosophical Magazine. 2016. Vol. 96. Is. 2. PP. 93–111.

    4. Эринген А.К. Теория микрополярной упругости. Разрушение. М.: Мир, 1975. Т. 2. С. 646–751.

    5. Ерофеев В.И. Волновые процессы в твердых телах с микроструктурой. Москва: Изд. Моск. ун-та, 1999. 328 с.

    6. Савин Г.Н., Шульга Н.А. Динамическая плоская задача моментной теории упругости. Прикл. механика. 1967. 3, № 6. С. 216–221.

    7. Шваб’юк В.І., Мікуліч О.А., Шваб’юк В.В. Напружений стан пінистих середовищ із тунельними порожнинами при нестаціонарному динамічному навантаженні. Проблеми міцності. 2017. № 6. С. 99–113.

    8. Мікуліч О.А. Розрахунок напруженого стану пінистих матеріалів за динамічних навантажень. Наукові нотатки. 2017. № 58. С. 243–247.

    9. Wang Y., Gioia G., Cuitiño A. The Deformation Habits of Compressed Open-Cell Solid Foams. Journal of Engineering Materials and Technology. 2000. Vol. 122. РР. 376–378.

    10. Mikulich О.А. Shvabjuk V.I. Interaction of weak shock waves with rectangular meshes in plates. Odes’kyi Politehnichnyi Universytet. Pratsi. 2016. № 2(49). P. 104–110.

    11. Уфлянд Я.С. Интегральные преобразования в задачах теории упругости. Ленинград: Наука, 1968. 402 с.

    12. Bonnet М. Integral equations and boundary elements. Mechanical application of solids and fluids. (Equations integrales et elements de frontiure. Application en mecanique des solider et des fluids) Paris, 5CNRS Editions / Editions EYROLLES. 1995. 316 p.

    13. Сидорова Т.В., Зыкова Т.В.,. Сафонов К.В. О модификации быстрого одномерного преобразования Фурье по алгоритму Кули–Тьюки. Вестник СибГАУ. 2015. Т. 16, № 2. С. 360–363.

    References

    1. Anderson W.B., & Lakes R.S. (1994). Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam. J. of Mater. Sci., 29, 6413–6419.

    2. Lakes R. (1995). Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum models for materials with microstructure, 1, 1–22.

    3.  Rueger, Z., & Lakes R.S. (2016). Experimental Cosserat elasticity in open-cell polymer foam. Philosophical Magazine, 96 (2), 93–111.

    4.  Eringen A.K. (1975). Theory of micropolar elasticity. Destruction. (Vol. 2). Moscow.

    5.  Erofeev V.I. (1999). Wave processes in solids with microstructure. Moscow.

    6.  Savin G.N., & Shulga N.A. (1967). Dynamic plane problem of the moment theory of elasticity, Applied mechanics, 3(6), 216–221.

    7. Shvabyuk V.I., Mikulich O.A., & Shvabyuk V.V. (2017). The stress state of foam media with tunnel cavities under the non-stationary dynamic loads. J. of Strength Materials, 6, 99–113.

    8.  Mikulich O.A. (2017). Calculation of Stress State of Foam Materials by Action of Dynamic Loads, Naukowi Notatky, 58, 243–247.

    9. Wang Y., Gioia G., Cuitiño A. (2000). The Deformation Habits of Compressed Open-Cell Solid Foams, J. of Engineering Materials and Technology, 122, 376–378.

    10. Mikulich О.А. & Shvabjuk V.I. (2016). Interaction of weak shock waves with rectangular meshes in plates. Odes’kyi Politehnichnyi Universytet. PRATSI, 2, 49, 104–110.

    11. Ufljand Ya.S. (1968). Integral transformations in the problems of the theory of elasticity. Leningrad: Nauka.

    12. Bonnet М. (1995). Integral equations and boundary elements. Mechanical application of solids and fluids. (Equations integrales et elements de frontiure. Application en mecanique des solider et des fluids), Paris, 5CNRS Editions / Editions EYROLLES.

    13. Sidorova T.V., Zykova T.V., & Safonov K.V. (2015) On the modification of the fast one-dimensional Fourier transform by the Cooley-Tukey algorithm, Vestnik of SibGAU, 16, 2, 360–363.

  • Creative Commons License by Author(s)