Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Calculation of cylindrical multilayer electromechanical transducer at different polarization types in nonstationary modes

  • Authors

    Grigoryеva Ludmila О.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2018
    Issue 1(54)
    UDC 539.3
    DOI 10.15276/opu.1.54.2018.01
    Pages 5-11
  • Abstract

    Numerical research method for oscillations of cylindrical multilayer electromechanical transducers with electrode conjugation surfaces at electrical disturbances is developed. Electromechanical state parameters of transducer depending on the number of electrode layers and polarization direction are investigated dynamically. Dependence of the radial oscillations frequency on geometric dimensions and proportionality between amplitude values of displacements and stresses in cylinders with oncoming polarization layers and the number of layers are established. Correlation between outer surface oscillations and cylinder inner opening size is studied.

  • Keywords piezoceramic transducer, non-stationary oscillations, electrical disturbances, multilayer piezoelectric element, polarization direction
  • Viewed: 115 Dowloaded: 2
  • Download Article
  • References

    Література

    1. Бабаев А.Э. Нестационарные волны в сплошных средах с системой отражающих поверхностей. Киев: Наукова думка, 1990. 176с.

    2. Busch-Vishniac, I.J. Electromechanical Sensors and Actuators. New York: Springer, 1999. 342 p.

    3. Гузь А.Н., Кубенко В.Д., Бабаев А.Э. Гидроупругость систем оболочек. Киев: Выща школа, 1984. 206 с.

    4. Кубенко В.Д. Нестационарное взаимодействие элементов конструкций со средой. Киев: Наукова думка, 1979. 184 с.

    5. Шульга Н.А., Григорьева Л.О. Радиальные электромеханические нестационарные колебания по-лого пьезокерамического цилиндра при электрическом возбуждении. Прикл. механика. 2009. 45, №2. С. 30−35.

    6. Ding H.J., Wang H.M., Hou P.F. The transient responses of piezoelectric hollow cylinders for axisym-metric plain strain problems. Int. J. of Solids and structures. 2003. Vol. 40. P. 105–123.

    7. Shulga M.O., Grigoryeva L.O. Electromechanical unstationary thickness vibrations of piezoceramic transformers at electric excitation. Mechanical Vibrations: Types, Testing and Analysis. Nova Science Publishers, New York. 2010. P. 179−204.

    8. Шульга Н.А., Григорьева Л.О. Сравнительный анализ упругоэлектрических толщинных колеба-ний слоев с искривленными границами. Прикл. механика. 2011. 47, №2. С. 86−95.

    9. Yu J., Ma Q., Su Sh. Wave propagation in non-homogeneous magneto-electro-elastic hollow cylinders. Ultrasonics. 2008. Vol. 48, Issue 8, P. 664–677.

    10. Григоренко А.Я., Лоза И.А. Осесимметричные волны в слоистых полых цилиндрах с пьезокера-мическими радиально поляризованнымы слоями. Проблемы вычислительной математики и прочности конструкций. Днепропетровск. 2011. Вып.17. С. 87−95.

    References

    1. Babayev A.E. (1990). Unsteady waves in continuous media with a system of reflective surfaces. Kyiv: Naukova Dumka.

    2. Busch-Vishniac I.J. (1999). Electromechanical Sensors and Actuators. New York: Springer.

    3. Guz A.N., Kubenko V.D. & Babayev A.E. (1984). Hydroelasticity of shell systems. Kiev: High School.

    4. Kubenko V.D. (1979). Nonstationary interaction of structural elements with the environment. Kiev: Naukova Dumka.

    5. Shul’ga N.А. & Grigor’eva L.О. (2009). Radial electroelastic nonstationary vibration of a hollow pie-zoceramic cylinder subject to electric excitation. International Applied Mechanics, 45, 2, 134–138.

    6. Ding H.J., Wang H.M. & Hou P.F. (2003). The transient responses of piezoelectric hollow cylinders for axisymmetric plain strain problems. Int. J. of Solids and structures, 40, 105–123.

    7. Shulga M.O. & Grigoryeva L.O. (2010). Electromechanical unstationary thickness vibrations of piezoce-ramic transformers at electric excitation. Mechanical Vibrations: Types, Testing and Analysis, 179–204.

    8. Shul'ga N.A. & Grigor'eva L.O. (2011). Comparative Analysis of the Electroelastic Thickness Vibra-tions of Layers with Curved Boundaries. International Applied Mechanics, 47, 2, 177–185.

    9. Yu J., Ma Q., & Su Sh. (2008). Wave propagation in non-homogeneous magneto-electro-elastic hollow cylinders. Ultrasonics, 48, 8, 664–677.

    10. Grigorenko A.Ya. & Loza I.A. (2011). Axisymmetric waves in layered hollow cylinders with piezoce-ramic radially polarized layers. Problems of Computational Mathematics and Strength of Construction, 17, 87–95.

  • Creative Commons License by Author(s)