Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Increasing of process energy efficiency of biogas plants production processing

  • Authors

    Maksimov М. М.
    Davydov V. О.
    Krusir G. V.
    Maksimova О. B.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2017
    Issue 3(53)
    UDC 658.511
    DOI 10.15276/opu.3.53.2017.06
    Pages 43-53
  • Abstract

    As a result of the decomposition of plant biomass in biogas digesters, a significant amount of such a resource as digestate is obtained. Formally, this is valuable biofertilizer, but in practice, there are many factors can limit its use. For example, seasonality in need, the need for storage, significant transportation costs, the need for pre-processing, etc. In addition, in the task of growing biomass for its subsequent transformation into electricity, environmentally friendly biofertilizers also lose their relevance. On the other hand, digestate has a significant energy potential. The use of this potential can substantially increase the depth of processing of the initial biomass into electricity. The work evaluates the energy potential of the initial corn biomass and analyzes the efficiency of the thermal treatment of digestate in a pyrolysis furnace. It is shown that utilization of all pyrolysis products will increase the yield of useful energy by 62% in comparison with the energy potential of biogas produced. Utilization of pyrogas only increases the efficiency of the entire process by 38%.

  • Keywords biogas digesters, digestate, pyrolysis furnace
  • Viewed: 150 Dowloaded: 5
  • Download Article
  • References

    1. Про Національний план дій з відновлюваної енергетики на період до 2020 року. za-kon2.rada.gov.ua. 2014. URL: http://zakon2.rada.gov.ua/laws/show/902-2014-%D1%80 (дата звер-нення 18.09.2017)
    2. Bio-slurry as fertilizer / Bonten, L.T.C. et al. Alterra report 2519, Alterra Wageningen UR Wageningen. 2014. 50 p.
    3. LE Thi Xuan Thu. Bioslurry management and utilization and need for training. Final report. Hanoi, September, 2015. URL: http://www.snv.org/public/cms/sites/default/files/explore/download/bio-slurry_management_utilization_and_need_for_training.pdf (Last accessed 03.10.2017)

    4. Olah Limbah Jadi Berkah. About Bio-Slurry. Rumah Energi. 2015. URL: http://www.biru.or.id/ en/index.php/bio-slurry/ (Last accessed 07.10.2017)
    5. (2016) Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment. Monlau, F. et al. Applied Energy. 2016. 169. P. 652–662.
    6. Haruo Kawamoto. Lignin pyrolysis reactions . Journal of Wood Science. 2017. v. 63, 2. 117–132.
    7. Карта солнечной активности в Украине. URL: http://www.solar-battery.com.ua/karta-solnechnoy-aktivnosti-v-ukraine/ (дата звернення 11.09.2017)
    8. Выход биогаза из разных видов субстратов. Biteco. 2013. URL: http://www.biteco-energy.com/vyhod-biogaza-iz-razlichnogo-syrya/ (дата звернення 11.10.2017)
    9. Predition rules for biogas valorisation in municipal solid waste landfills. Marticorena, A. et al. AVat. Sci. Tech. 1993. v. 27, 2, 235–241.
    10. Mes T.Z.D. de, Stams A.J.M., Zeeman G. Chapter 4. Methane production by anaerobic digestion of wastewater and solid wastes / (Ed.) Reith J.H., Wijffels R.H., Barten H. Biomethane and Biohydrogen. Status and perspectives of biological methane and hydrogen production. 2003. 58–94.
    11. Технологии быстрого пиролиза биомассы. URL: http://studbooks.net/1242797/ ekologi-ya/tehnologii_bystrogo_piroliza_biomassy (дата звернення 18.10.2017)
    12. Технологическая карта выращивания кукурузы. august.in.ua. URL: august.in.ua/ sites/default/files/ upload_files/kukuruza.xls (дата звернення 29.09.2017)

  • Creative Commons License by Author(s)