Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Using software based on the Monte-Carlo method for receiving the few-group homogenized macroscopic interaction cross-section

  • Authors

    Galchenko V. V.
    Abdulaev А. М.
    Shlapak І. І.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2017
    Issue 3(53)
    UDC 621.039.51
    DOI 10.15276/opu.3.53.2017.05
    Pages 37-42
  • Abstract

    The constant preparation issues are important for performing the few-group analysis for different states of the reactor core. Besides, the constant preparation method influences the further calculations accuracy and quality. The transport software products (deterministic codes) are usually used for the few-group characteristics preparation. On the basis of the neutron transport theory these codes calculate neutron fluxes depending on the energy and on the location in the cell. In present paper the description of fuel assembly calculation scheme for preparing the few-group characteristics is given for the Serpent code. This code uses the Monte-Carlo method and energy continuous microscopic data library. Serpent code was developed for calculating the fuel assembly characteristics including burnup calculations and preparation of the few-group homogenized macroscopic interaction cross-sections for the core calculating. The calculation scheme for the Serpent code for FAA and the results of the basic neutron-physical characteristics comparative calculations with PHOENIX-H and WIMSD5B codes are presented.

  • Keywords Serpent, PHOENIX-H, WIMS, computer codes, VVER-1000, Monte-Carlo method, cross-sections, multiplication factor
  • Viewed: 473 Dowloaded: 2
  • Download Article
  • References

    1. Briesmeister J. MCNP General Monte Carlo Code N-Particle Transport Code Version 4C, LA-13709-М. 1993. 790 p.
    2. Leppänen J. PSG2/Serpent – a continuous-energy monte carlo reactor phisics burnup calculation code. Methodology. User’s Manual. Validation report. Helsinki University of Technology. November 6, 2009.
    3. Fridman E., Shwageraus E. Modeling of SFR cores with Serpent–DYN3D codes sequence. Annals of Nuclear Energy. 2013. Vol. 53. P. 354–363.
    4. Fridman E., Leppänen J. On the use of the Serpent Monte Carlo code for few-group cross section gen-eration. Annals of Nuclear Energy. 2011. Vol. 38. P. 1399–1405.
    5. A general description of the lattice code WIMS / J.R. Askew et al. Journal of the British Nuclear Energy Society. 1966. 5 (1). P. 564–584.
    6. Математическое моделирование радиационных процессов в реакторных установках. /В.В. Ган та ін. Вопросы атомной науки и техники. Харьков, 2009. №2 (93). C. 135–144.
    7. Comparison of the APA-H (Westinghouse) calculations with the operational data for ZPNPP Unit №3 Cycles 16 19. / A.M. Abdullayev, et al. Comparison. Proceedings of 17th Symposium of AER on VVER Reactor Physics and Reactor Safety. September 24–29. 2007. Yalta. Crimea.
    8. Гальченко В.В. Сравнительный анализ подготовки данных с использованием различных компь-ютерных кодов. Часть 2. Ядерні та радіаційні технології. Київ, 2007. т. 7 (№3–4). С. 29–42.
    9. Гальченко В.В., Мішин А.А. Порівняльний аналіз нейтронно-фізичних характеристик кампанії реактора з використанням різних наборів бібліотек ядерних даних для програмного продукту WIMSD5B. Ядерна та радіаційна безпека. Київ, Вип. 3(67). 2015. С. 8–12.
    10. Інтернет-сторінка коду Serpent. URL: http://montecarlo.vtt.fi/ (дата звернення 18.05.16).
    11. The Serpent Monte Carlo code: Status, development and applications in 2013/ Leppänen J. et al. Annals of Nuclear Energy. 2015. Vol. 82. P. 142–150.

  • Creative Commons License by Author(s)