Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Estimation of residual strength of pipeline's elbow with volumetric corrosion defect, which is developing

  • Authors

    Larin О. О.
    Potopalska K. E.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2017
    Issue 3(53)
    UDC 539.43: 621.64
    DOI 10.15276/opu.3.53.2017.02
    Pages 12-19
  • Abstract

    Pipelines are used as one of the most practical and low cost methods for transmission of different liquid petroleum products and gases. Damage on the pipeline is capable to appear during operation due to the accumulation of fatigue and arising of corrosion. The Aim is estimation the residual strength of pipeline's elbow with volumetric surface defect development of which is modeled in time. Deformed state assessment of damaged elbow of pipelines was held in the framework of computer modeling by using finite-element method (FEM). Corrosion damage modeled explicitly as volumetric defect on the outside of the knee pipeline. Based on the results of the study the assessment of the residual strength of pipeline with increasing surface defects in operation from 10 to 45 years has been obtained. Besides, the areas in which there is localization of maximum equivalent stresses and respectively plastic deformation depending on the size of damage were defined. By obtained results may be noted that after 37 years of operation the pipelines with the corresponding defect on surface cannot withstand the maximum load.

  • Keywords pipelines, corrosion, damage, stress-strain state, residual strength
  • Viewed: 393 Dowloaded: 4
  • Download Article
  • References

    1. Valor A., Caleyo F., Hallen J. M., Velázquez J.C. Reliability assessment of buried pipelines based on different corrosion rate models. Corrosion Science, 2013. Vol. 66. P. 78–87. DOI: 10.1016/j.corsci.2012.09.005
    2. Caleyo F., Velázquez J.C., Valor A., Hallen J.M. Probability distribution of pitting corrosion depth and rate in underground pipelines : a monte carlo study. Corrosion Science. 2009. Vol. 51, No. 9. P. 1925–1934. DOI: 10.1016/j.corsci.2009.05.019
    3. Ждек А.Я., Груз В.Я. Визначення залишкового ресурсу тривало експлуатованих нафтопроводів із врахування неявних корозійних дефектів та умов експлуатації. Науковий вісник ІФНТУНГ, 2013. Вип. №2(32). С. 132–135.
    4. Ma B., Shuai J., Liu D., Xu K. Assessment on failure pressure of high strength pipeline with corrosion defects. Engineering Failure Analysis. 2013. Vol. 32. P. 209–219. DOI: 10.1016/j.engfailanal.2013.03.015
    5. Li X., Bai Y., Su C., Li M. Effect of interaction between corrosion defects on failure pressure of thin wall steel pipeline. International Journal of Pressure Vessels and Piping. 2016. 138. P. 8–18. DOI: 10.1016/j.ijpvp.2016.01.002
    6. Han Y-L, Shen S-M., Dai S-H. Artificial neural network technology as a method to evaluate the failure bending moment of a pipe with a circumferential crack. International Journal of Pressure Vessels and Piping. 1996. Vol. 0161, No. 95. P. 1–6. DOI: 10.1016/0308-0161(95)00033-X
    7. Fekete G., Varga L. The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipelines. Engineering Failure Analysis. 2012. Vol. 21. P. 21–30. DOI: 10.1016/j.engfailanal.2011.12.002

    8. Silva R.C.C., Guerreiro J.N.C., Loula A.F.D.A study of pipe interacting corrosion defects using the fem and neural networks. Advances in Engineering Software. 2007. Vol. 38. P. 868–875. DOI: 10.1016/j.advengsoft.2006.08.047
    9. Al-Owaisi S.S., Becker A.A., Sun W. Analysis of shape and location effects of closely spaced metal loss defects in pressurised pipes. Engineering Failure Analysis. 2016. P. 22. DOI: 10.1016/j.engfailanal.2016.04.032
    10. Bedairi B., Cronin D., Hosseini A., Plumtree A. Failure prediction for crack-in-corrosion defects in nat-ural gas transmission pipelines. International Journal of Pressure Vessels and Piping. 2012. Vol. 96–97. P. 90–99. DOI: 10.1016/j.ijpvp.2012.06.002
    11. Chen Y., Zhang H., Zhang J. et al. Failure assessment of x80 pipeline with interacting corrosion defects. Engineering Failure Analysis. 2015. Vol. 47. P. 67–76. DOI: 10.1016/ j.engfailanal.2014.09.013
    12. Filho J.E.A., Machado R.D., Bertin R.J., Valentini M.D. On the failure pressure of pipelines containing wall reduction and isolated pit corrosion defects. Computers and Structures. 2014. Vol. 132. P. 22–33. DOI: 10.1016/j.compstruc.2013.10.017
    13. Cunha, D. J. S., Benjamin, A. C., Silva, R. C. C., Guerreiro, J. N. C., Drach, P. R. C. Fatigue analysis of corroded pipelines subjected to pressure and temperature loadings. International Journal of Pressure Vessels and Piping. 2014. 113, P. 15–24. DOI: 10.1016/j.ijpvp.2013.10.013
    14. Netto T.A., Ferraz U.S., Botto A. On the effect of corrosion defects on the collapse pressure of pipe-lines. International Journal of Solids and Structures. 2007. Vol. 44. P. 7597–7614. DOI: 10.1016/j.ijsolstr.2007.04.028
    15. Mirchev Y.N, Larin О., Potopalska K. Investigation of influence of the repair bandage on the stress-strain state of the pipeline elbow with VSD. NDT days 2016. “Дни на безразрушителния контрол 2016”. 2016. № 1 (187). P. 411–414.

  • Creative Commons License by Author(s)