Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Obtaining solutions of silver nanoparti-cles under plasma discharge

  • Authors

    Skiba Margaryta I.
    Pivovarov Alexandr A.
    Makarova Anna K.
    Vorobyova V. І.
    Vasylenko I. A.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2017
    Issue 2(52)
    UDC 541.18.02; 546.57
    DOI 10.15276/opu.2.52.2017.14
    Pages 93-100
  • Abstract

    The paper considers obtaining water solutions of silver nanoparticles with contact non-equilibrium low tem-perature plasma discharge. The aim of the work is to study the influence current of a discharge non-equilibrium low-temperature plasma on the composition of silver nanoparticles solutions. The investigations were carried out in a gas-liquid batch reactor the volume of which 100 ml. The reactor pressure was 80±4 kPa. The current was maintained at 120±6 mA. The time of treatment was from 10 seconds till 14 minutes. The solutions were prepared by dissolving the argentums nitrate in distilled water with a predetermined ratio. Oxidation-reduction potential was measurement 30 seconds after stopping the treatment of solutions of CNP using an ionometr I–160MI. Optical spectra of sols were recorded on the spectrophotometer UV-5800PC in the wavelength range 190…700 nm. Micrographs of nanoparticles were obtained with a scanning electron microscope REM-106I with magnification of 100…2000 times. Additional particle size analysis was performed by dynamic light scattering on a VASCO instrument (laser wavelength 658 nm). It is found, the сurrent strength in the circuit is influence to the yield of oxidized compounds and the desired product. The regularities of the change in the oxidation-reduction potential of aqueous solutions of argentum nitrate are studied depending on the concentration of AgNO3, the time of action plasma discharge and amperage. Morphological and dimensional characteristics of plasmochemical obtaining silver nanoparticles were researched. It is found the dispersion phase of nano-particles witch produced in results action of plasma discharge has size up to 50 nm and spherical form. If the amperage is growing it will produce the bigger particles.

  • Keywords solution of silver nanoparticles, plasma discharge, amperage
  • Viewed: 159 Dowloaded: 8
  • Download Article
  • References

    1. Amin, M.T. A review on removal of pollutants from water/wastewater using different types of nano-materials / M.T. Amin, A.A. Alazba, U. Manzoor // Advances in Materials Science and Engineering. – 2014. – Vol. 1. – 24 р. Article ID 825910.

    2. Gehrke, I. Innovations in nanotechnology for water treatment / I. Gehrke, A. Geiser, A. Somborn-Schulz // Nanotechnology, Science and Applications. – 2015. – Vol. 8. – Р. 1 – 17.

    3. New inorganic (an)ion exchangers based on (alkoxide-free) sol-gel generated layered Mg-Al hydrous oxides for target anions (Arsenate, Arsenite, Fluoride, Bromide, Bromate, Selenite) removal / Natalia Chubar //Fifteenth International Water Technology Conference Alexandria, Egypt. – 2011. – Р. 1 – 5.

    4. Saito, Genki. Nanomaterial Synthesis Using Plasma Generation in Liquid / Genki Saito, Tomohiro Aki-yama // Journal of Nanomaterials. – 2015. – 21 p. Article ID 123696.

    5. Sun, B. Optical study of activespecies produced by a pulsed streamer corona discharge inwater / B. Sun, M. Sato, J.S. Clements // Journal of Electrostatics. – 1997. – Vol. 39, No. 3. – P. 189 – 202.

    6. Bruggeman, P. Optical emission spectroscopy as a diagnostic for plasmas in liquids: opportunities and pitfalls / P. Bruggeman, T. Verreycken, M.A. Gonz´alez // Journal of PhysicsD: Applied Physics. –2010. – Vol. 43, No. 12. – 8 p. Article ID 124005.

    7. Kaneko, T. Static gas-liquidinterfacial direct current discharge plasmas using ionic liquidcathode / T. Kaneko, K. Baba, R. Hatakeyama // Journal of Applied Physics. – 2009. – Vol. 105, No. 10, – P. 21. Article ID103306.

    8. Jamroz, P. Development of directcurrent, atmospheric – pressure, glow discharges generated incontact with flowing electrolyte solutions for elemental analysisby optical emission spectrometry / P. Jamroz, K. Greda, P. Pohl // Elsevier. – 2013. – Vol. 108, – P. 74 – 82.

    9. Півоваров, О.А. Використання контактної нерівноважної низькотемпературної плазми в гідроме-талургійній промисловості: монографія / О.А. Півоваров, М.І. Скиба. – Дніпропетровськ: Акцент ПП, 2015. – 206 с.

    10. Пивоваров, А.А. Неравновесная плазма: процессы активации воды и водных растворов: моно-графия /. А.А.Пивоваров, А.П. Тищенко. — Днепропетровск: Грек, 2006. — 225 с.

    11. Пасенко, О.О. Плазмохімічне одержання наночасток срібла / О.О. Пасенко, М.І. Скиба, А.К. Ма-карова, та ін. // Вопросы химии и химической технологии. – 2016. – № 4 (108). – С. 93 – 97.

    12. Silver atoms and clusters in aqueous solution: absorption spectra and the particle growth in the absence of stabilizing Ag+ ions / B.G. Ershov, E. Janata, A. Henglein, A. Fojtik // Journalof Physical Chemistry. – 1993. – Vol. 97. – Iss. 18. – P. 4589 – 4594.

    13. Baetzold, Roger C. Silver–Water Clusters: A Theoretical Description of Agn(H2O)mforn=1–4; m=1–4 / Roger C. Baetzold // Journal Physical Chemistry. – 2015. – Vol. 119. – Iss. 15. – P. 8299 – 8309.

    14. Fluorescent silver oligomeric clusters and colloidal particles / M. Treguer, F. Rocco, Geraldelong, et al. // Solid State Sciences. – 2012. – Vol. 7. – Iss. 7. – P. 812 – 818.

  • Creative Commons License by Author(s)