Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Influence of organic ligands on copper electrodeposition from mono- and polyligand electrolytes

  • Authors

    Artemenko Valentyna M.
    Maizelis Antonina O.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2017
    Issue 1(51)
    UDC 621.35
    DOI 10.15276/opu.1.51.2017.16
    Pages 110-116
  • Abstract

    It is important to know the laws of copper electrodeposition from low-concentrated electrolytes containing different ligands because they simulate components of various copper-containing liquid wastes and electrolytes for electrodeposition of copper alloys with more electronegative metals. Aim: The aim of the research is to determine the characteristics of copper electrodeposition from low-concentrated mono- and polyligand electrolytes containing organic ligands. Materials and Methods: Electrolytes containing both inorganic (ammonia and pyrophosphate) and organic (tartrate, ethylenediaminetetraacetate, glycinate, sulfosalicylate) ligands were considered. Throwing power of electrolytes was determined using Hull cell. Results: It is shown that the copper electrodeposition in the presence of organic ligands occurs with high polarization and polarizability in comparison with sulphate electrolyte that leads to the deposition of fine-grained and uniform coating. The values of polarization and polarizability during cathodic copper electrodeposition from polyligand electrolyte containing ammonium and glycinate are between the values of polarization and polarizability during cathodic copper electrodeposition from monoligand (ammonia and glycinate) electrolytes. The addition of ethylenediaminetetraacetic acid disodium salt to copper pyrophosphate electrolyte leads to the depolarization of the copper reduction process, while addition of sulfosalicylate as additional ligand increases the copper discharge complications due to the delayed prior chemical stage of complex dissociation. The low-concentrated polyligand electrolyte based on the mixed pyrophosphate-sulfosalicylate complexes can be recommended for electrodeposition of copper underlayer on the substrate with electronegative potential.

  • Keywords

    copper, electrodeposition, ammonia, pyrophosphate, sulfosalicylate, glycinate, tartrate

  • Viewed: 405 Dowloaded: 3
  • Download Article
  • References

    Література
    1.    Sayem Rahman, A.S.M. Electrodeposition and characterization of copper oxide thin films for solar cell applications / A.S.M. Sayem Rahman, M.A. Islam, K.M. Shorowordi // Procedia Engineering. – 2015. – Vol. 105. – PP. 679-685.
    2.    Low, C.T.J. Electrodeposition of copper from mixed sulphate–chloride acidic electrolytes at a rotating disc electrode / C.T.J. Low, C. Ponce de Leon, F.C. Walsh // Transactions of the IMF. – 2014. – Vol. 92, Issue 5. – PP. 282-288.
    3.    Copper electrodeposition kinetics measured by alternating current voltammetry and the role of ferrous species / M.-E. Wagner, R. Valenzuela, T. Vargas, etc. // Journal of The Electrochemical Society. – 2016. – Vol. 163, Issue 2. – D17-D23.
    4.    Майзелис, А. А. Извлечение металлов из модифицированных ванн улавливания гальванических линий / А. А. Майзелис // Екологія та охорона навколишнього середовища: матеріали наук.-практ. конф. молодих вчених, 26-18 березня 2009 р., Одеса, Україна / під ред. Т.А. Сафранов [та ін.]. – Херсон: Олді-плюс, 2009. – С. 37-39.
    5.    Федулова, А.А. Многослойные печатные платы / А.А. Федулова, Е.П. Котов, Э.Р. Явич; под ред. Е.П. Котова. – 2-е изд., перераб. и доп. – М.: Советское радио, 1977. – 247 с.
    6.    Montrose, M.I. EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple / M.I. Montrose. – New York: IEEE Press, 1999. – 325 p.
    7.    Равномерность мультислойных Cu/(Ni-Cu) покрытий по толщине / А.А. Майзелис, Б.И. Байрачный, Л.В. Трубникова [и др.] // Восточно-Европейский журнал передовых технологий. – 2012. – № 4/5 (58). – С. 21-24.
    8.    Kublanovsky, V. Mass transfer and mechanism of electrochemical reduction of copper(II) from aminoacetate electrolytes / V. Kublanovsky, K. Litovchenko // Journal of Electroanalytical Chemistry. – 2000. – Vol. 495, Issue 1. – PP. 10-18.
    9.    Miura, S. Advanced copper electroplating for application of electronics / S. Miura, H. Honma // Surface and Coatings Technology. – 2003. – Vol. 169–170. – PP. 91-95.
    10.    Якименко, Г.Я. Технічна електрохімія. Ч. 3: Гальванічні виробництва / Г.Я. Якименко, В.М. Артеменко; за ред. д-ра техн. наук, проф. Б.І. Байрачного. – Харків: НТУ «ХПІ», 2006. – 271 с.
    11.    Справочник химика. Т. 3: Химическое равновесие и кинетика. Свойства растворов. Электродные процессы / под ред. Б.П. Никольского. – 2-е изд., перераб. и доп. – М.: Химия, 1964. – 1004 с.
    12.    Darj, M.M. Complexation between copper(II) and glycine in aqueous acid solutions by window factor analysis of visible spectra / M.M. Darj, E.R. Malinowski // Analytical Chemistry. – 1996. – Vol. 68, Issue 9. – PP. 1593-1598.
    13.    Laser-induced copper deposition with weak reducing agents / V.A. Kochemirovsky, S.A. Fateev, L.S. Logunov, etc. // International Journal of Electrochemical Science. – 2014. – Vol. 9, Issue 2. – PP. 644-658.
    14.    Jaya, S. Complexation of copper(II) by glycine in fresh and sea water media / S. Jaya, T. Prasadarao, G. Prabhakararao // Bulletin of Electrochemistry. – 1987. – Vol. 3, Issue 5. – PP. 475-478.
    15.    Орехова, В.В. Полилигандные электролиты в гальваностегии: монография / В.В. Орехова, Ф.К. Андрющенко. – Харьков: Вища школа, 1979. – 143 с.

    References
    1.    Sayem Rahman, A.S.M., Islam, M.A., & Shorowordi, K.M. (2015). Electrodeposition and characterization of copper oxide thin films for solar cell applications. Procedia Engineering, 105, 679-685. DOI:10.1016/j.proeng.2015.05.048
    2.    Low, C.T.J., Ponce de Leon, C., & Walsh, F.C. (2014). Electrodeposition of copper from mixed sulphate–chloride acidic electrolytes at a rotating disc electrode. Transactions of the IMF, 92(5), 282-288. DOI:10.1179/0020296714Z.000000000186
    3.    Wagner, M.-E., Valenzuela, R., Vargas, T., Colet-Lagrille, M., & Allanore, A. (2015). Copper electrodeposition kinetics measured by alternating current voltammetry and the role of ferrous species. Journal of The Electrochemical Society, 163(2), D17–D23. DOI:10.1149/2.0121602jes
    4.    Maizelis, A.A. (2009). Extraction of metals from modified electroplating baths. In T.A. Safranov (Ed.), Proceedings of Scientific and Practical Conference of Young Scientists on Ecology and Environmental Protection (pp. 37-39). Kherson: Oldi-Plus.
    5.    Fedulova, A.A., Kotov, E.P., & Javicz, E.R. (1977). Multilayer Printed Circuit Boards (2nd Ed.). Moscow: Sovetskoe Radio.
    6.    Montrose, M.I. (1999). EMC and the Printed Circuit Board: Design, Theory, and Layout Made Simple. New York: IEEE Press.
    7.    Maizelis, A.A., Bayrachniy, B.I., Trubnikova, L.V., Ivaschenko, V.N., & Sorochinskiy, V.M (2012). The thickness uniformity of the Cu/(Ni-Cu) multilayer coating. Eastern-European Journal of Enterprise Technologies, 4(5), 21-24.
    8.    Kublanovsky, V., & Litovchenko, K. (2000). Mass transfer and mechanism of electrochemical reduction of copper(II) from aminoacetate electrolytes. Journal of Electroanalytical Chemistry, 495(1), 10-18. DOI:10.1016/S0022-0728(00)00372-7
    9.    Miura, S., & Honma, H. (2003). Advanced copper electroplating for application of electronics. Surface and Coatings Technology, 169–170, 91-95. DOI:10.1016/S0257-8972(03)00165-8
    10.    Yakymenko, G.Ya., & Artemenko, V.M. (2006). Technical Electrochemistry (Vol. 3, Electroplating). Kharkiv: NTU “KhPI”.
    11.    Nikolsky, B.P. (Ed.). (1965). Handbook of Chemistry (Vol. 3, Chemical equilibrium and kinetics. Properties of solutions. Electrode processes). Moscow; Leningrad: Khimia.
    12.    Darj, M.M., & Malinowski, E.R. (1996). Complexation between copper(II) and glycine in aqueous acid solutions by window factor analysis of visible spectra. Analytical Chemistry, 68(9), 1593-1598. DOI:10.1021/ac951172v
    13.    Kochemirovsky, V.A., Fateev, S.A., Logunov, L.S., Tumkin, I.I., & Safonov, S.V. (2014). Laser-induced copper deposition with weak reducing agents. International Journal of Electrochemical Science, 9(2), 644-658.
    14.    Jaya, S., Prasadarao, T., & Prabhakararao, G. (1987). Complexation of copper (II) by glycine in fresh and sea water media. Bulletin of Electrochemistry, 3(5), 475-478.
    15.    Orekhova, V.V., & Andryushchenko, F.K. (1979). Polyligand Electrolytes in Electroplating. Kharkiv: Vyssha Shkola.

  • Creative Commons License by Author(s)