Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Plasma-chemical preparation of nanoscale cobalt oxide

  • Authors

    Skiba Margaryta I.
    Pivovarov Alexandr A.
    Makarova Anna K.
    Vorobyova Viktoriya I.

  • Subject

    CHEMISTRY. CHEMICAL ENGINEERING

  • Year 2017
    Issue 1(51)
    UDC 66:533.9
    DOI 10.15276/opu.1.51.2017.15
    Pages 101-109
  • Abstract

    As of today, sols and nanodispersed systems of transition metal oxides are increasingly spreading. Due to a number of properties, undoubted interest for the development of technologies in various industries is represented by cobalt oxide Со3О4. In this paper, we demonstrate the results of studies on the use of a contact nonequilibrium low-temperature plasma as a tool for obtaining nanoscale cobalt oxide. Aim: The aim of the work is to obtain cobalt oxide using a contact nonequilibrium low-temperature plasma. Materials and Methods: The investigations were carried out in a gas-liquid batch reactor. The electrodes are made of stainless steel. The plasma column formed as a result of the test is a processing tool. Cooling of the reaction mixture was ensured by continuous circulation of cold water. The reactor pressure was 80±4 kPa. To obtain a plasma discharge, a voltage of 500...1000 V was applied to the electrodes. The current was maintained at 120±6 mA. Optical spectra of sols were recorded in the wavelength range 190...700 nm. The thermal analysis was carried out in an air medium at a heating rate of 10 deg/min in quartz crucibles. The obtained samples were examined by X-ray phase analysis. The dimensional parameters of the obtained compounds were examined using an electron microscope. Results: Theoretical and experimental studies of the hydrolysis of cobalt chloride as a preliminary stage for the preparation of oxygen-containing cobalt compounds are carried out: calculations of the distribution of cobalt ions, its constituents, and the dependence of the solubility of cobalt hydroxide on the pH value and ionic force are presented. It was found that the final pH value of cobalt hydroxide precipitation varies in the range 8.2...9.0 and, depending on the magnitude of the ionic force, is 9.0 and 8.2 at I = 0, I = 1, respectively. The regularities of the change in the oxidation-reduction potential and the hydrogen index of cobalt oxide solutions during their processing by a low-temperature nonequilibrium plasma are studied. The phase composition of the plasma-chemical obtained cobalt compounds was investigated by X-ray diffraction and thermal analysis. The main phase of the product obtained is represented by cobalt oxide of structure Со3О4. According to the data of microscopic and X-ray diffraction methods of analysis, it is shown that the sizes of the obtained cobalt compounds lie in the nanometer range.

  • Keywords plasma discharge, production, aqueous solutions, cobalt oxide, nanoparticles
  • Viewed: 35 Dowloaded: 1
  • Download Article
  • References

    Література
    1.    Mate, V.R. Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen / V.R. Mate, M. Shirai, C.V. Rode // Catalysis Communications. – 2013. – Vol. 33. – PP. 66-69.
    2.    Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue / T. Warang, N. Patel, A. Santini, etc. // Applied Catalysis A: General. – 2012. – Vol. 423–424. – PP. 21-27.
    3.    Sugimoto, T. Colloidal cobalt hydrous oxides. Preparation and properties of monodispersed Co3O4/ T. Sugimoto, E. Matijević // Journal of Inorganic and Nuclear Chemistry. – 1979. – Vol. 41, Issue 2. – PP. 165-172.
    4.    Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes / X.W. Lou, D. Deng, J.Y. Lee, etc. // Advanced Materials. – 2008. – Vol. 20, Issue 2. – PP. 258-262.
    5.    Mariotti, D. Microplasmas for nanomaterials synthesis / D. Mariotti, R.M. Sankaran // Journal of Physics D: Applied Physics. – 2010. – Vol. 43, Issue 32. – P. 323001.
    6.    Shirai, N. Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric dc glow discharge in contact with liquid / N. Shirai, S. Uchida, F. Tochikubo // Japanese Journal of Applied Physics. – 2014. – Vol. 53, Issue 4. – P. 046202.
    7.    Chiang, W.-H. Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase / W.-H. Chiang, C. Richmonds, R.M. Sankaran // Plasma Sources Science and Technology. – 2010. – Vol. 19, Issue 3. – P. 034011.
    8.    Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas / J. McKenna, J. Patel, S. Mitra, etc. // The European Physical Journal Applied Physics. – 2011. – Vol. 56, Issue 2. – P. 24020.
    9.    Синтез наночастинок золота з водних розчинів тетрахлороаурату(ІІІ) водню плазмохімічним способом / М.І. Воробйова, О.А. Півоваров, В.І. Воробйова, Л.А. Фролова // Восточно-Европейский журнал передовых технологий. – 2014. – № 4/5 (70). – С. 39-44.
    10.    Воробйова, М.І. Формування колоїдних наночасток срібла з водних розчинів AgNO3 під дією контактної нерівноважної плазми / М.І. Воробйова, О.А. Півоваров // Вісник ЧДТУ. Серія: Технічні науки. – 2014. – № 2(73). – С. 22-28.
    11.    Giasson, G. Hydrolysis of Co(II) at elevated temperatures / G. Giasson, P.H. Tewari // Canadian Journal of Chemistry. – 1978. – Vol. 56, Issue 4. – PP. 435-440.
    12.    Yavuz, Ö. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite / Ö. Yavuz, Y. Altunkaynak, F. Güzel // Water Research. – 2003. – Vol. 37, Issue 4. – PP. 948-952.
    13.    Півоваров, О.А. Використання контактної нерівноважної низькотемпературної плазми в гідрометалургійній промисловості: монографія / О.А. Півоваров, М.І. Скиба. – Дніпропетровськ: Акцент, 2016. – 204 c.
    14.    Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors / K. Deori, S.K. Ujjain, R.K. Sharma, S. Deka // ACS Applied Materials & Interfaces. – 2013. – Vol. 5, Issue 21. – PP. 10665-10672.
    15.    CuO and Co3O4 nanoparticles: Synthesis, characterizations, and Raman spectroscopy / M. Rashad, M. Rüsing, G. Berth, etc. // Journal of Nanomaterials. – 2013. – Vol. 2013. – 6 p.
    16.    Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods / G. Wang, X. Shen, J. Horvat, etc. // The Journal of Physical Chemistry C. – 2009. – Vol. 113, Issue 11. – PP. 4357-4361.
    17.    Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO / G. Marbán, I. López, T. Valdés-Solís, A.B. Fuertes // International Journal of Hydrogen Energy. – 2008. – Vol. 33, Issue 22. – PP. 6687-6695.

    References
    1.    Mate, V.R., Shirai, M., & Rode, C.V. (2013). Heterogeneous Co3O4 catalyst for selective oxidation of aqueous veratryl alcohol using molecular oxygen. Catalysis Communications, 33, 66-69. DOI:10.1016/j.catcom.2012.12.015
    2.    Warang, T., Patel, N., Santini, A., Bazzanella, N., Kale, A., & Miotello, A. (2012). Pulsed laser deposition of Co3O4 nanoparticles assembled coating: Role of substrate temperature to tailor disordered to crystalline phase and related photocatalytic activity in degradation of methylene blue. Applied Catalysis A: General, 423–424, 21-27. DOI:10.1016/j.apcata.2012.02.037
    3.    Sugimoto, T., & Matijević, E. (1979). Colloidal cobalt hydrous oxides. Preparation and properties of monodispersed Co3O4. Journal of Inorganic and Nuclear Chemistry, 41(2), 165-172. DOI:10.1016/0022-1902(79)80506-0
    4.    Lou, X.W., Deng, D., Lee, J.Y., Feng, J., & Archer, L.A. (2007). Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Advanced Materials, 20(2), 258-262. DOI:10.1002/adma.200702412
    5.    Mariotti, D., & Sankaran, R.M. (2010). Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 43(32), 323001. DOI:10.1088/0022-3727/43/32/323001
    6.    Shirai, N., Uchida, S., & Tochikubo, F. (2014). Synthesis of metal nanoparticles by dual plasma electrolysis using atmospheric dc glow discharge in contact with liquid. Japanese Journal of Applied Physics, 53(4), 046202. DOI:10.7567/JJAP.53.046202
    7.    Chiang, W.-H., Richmonds, C., & Sankaran, RM. (2010). Continuous-flow, atmospheric-pressure microplasmas: A versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Science and Technology, 19(3), 034011. DOI:10.1088/0963-0252/19/3/034011
    8.    McKenna, J., Patel, J., Mitra, S., Soin, N., Švrček, V., Maguire, P., & Mariotti, D. (2011). Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas. The European Physical Journal Applied Physics, 56(2), 24020. DOI:10.1051/epjap/2011110203
    9.    Vorobyova, M., Pivovarov, A., Vorobyova, V., & Frolova, L. (2014). Synthesis of gold nanoparticles from aqueous solutions of chloroauric acid with plasma-chemical method. Eastern-Еuropean Journal of Enterprise Technologies, 4(5), 39-44. DOI:10.15587/1729-4061.2014.26262
    10.    Vorobyova, M., & Pivovarov, O. (2014). Formation of the colloid silver nanoparticles from aqueous solutions AgNO3 under the influence of the contact nonequilibrium plasma. Visnyk of Chernihiv State Technological University: Technical Sciences, 2, 22-28.
    11.    Giasson, G., & Tewari, P.H. (1978). Hydrolysis of Co(II) at elevated temperatures. Canadian Journal of Chemistry, 56(4), 435-440. DOI:10.1139/v78-069
    12.    Yavuz, Ö., Altunkaynak, Y., & Güzel, F. (2003). Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 37(4), 948–952. DOI:10.1016/S0043-1354(02)00409-8
    13.    Pivovarov, O.A., & Skyba, M.I. (2016). Application of Contact Nonequilibrium Low-Temperature Plasma in Hydrometallurgical Industry. Dnipropetrovsk: Aktsent.
    14.    Deori, K., Ujjain, S.K., Sharma, R.K., & Deka, S. (2013). Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors. ACS Applied Materials & Interfaces, 5(21), 10665-10672. DOI:10.1021/am4027482
    15.    Rashad, M., Rüsing, M., Berth, G., Lischka, K., & Pawlis, A. (2013). CuO and Co3O4 nanoparticles: synthesis, characterizations, and Raman spectroscopy. Journal of Nanomaterials, 2013, 714853. DOI:10.1155/2013/714853
    16.    Wang, G., Shen, X., Horvat, J., Wang, B., Liu, H., Wexler, D., & Yao, J. (2009). Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. The Journal of Physical Chemistry C, 113(11), 4357-4361. DOI:10.1021/jp8106149
    17.    Marbán, G., López, I., Valdés-Solís, T., & Fuertes, A.B. (2008). Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO. International Journal of Hydrogen Energy, 33(22), 6687-6695. DOI:10.1016/j.ijhydene.2008.07.067

  • Creative Commons License by Author(s)