Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    The algorithms for automated calculation of the furnace charge in smelting and refining metal

  • Authors

    Kungurtsev Аlexey B.
    Senkevich Yuriy I.
    Zinovatnaya Hanna O.
    Novikova Natalia O.

  • Subject

    COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

  • Year 2017
    Issue 1(51)
    UDC 004.9:621.74
    DOI 10.15276/opu.1.51.2017.11
    Pages 61-71
  • Abstract

    The production of the initial liquid metal with minimal departures from the regulated chemical composition is one of the main conditions for the production of high-quality castings with predetermined physical, mechanical and operational properties. An important factor is also the optimization of the composition of the furnace charge to reduce production costs. The program complexes to automate the management of the entire melting process, incl. calculation of furnace charge and refining the liquid metal to the predetermined chemical composition during the melting process cannot be claimed by small and medium businesses because of the high cost, complexity and increased requirements for the qualification of personnel. Aim: The aim of the research is to automate the calculation of the furnace charge for obtaining a melt with a given set of physical, mechanical and operational properties by developing and implementing appropriate algorithms to obtain a minimum cost composition of the furnace charge, taking into account the limitations of the components. Materials and Methods: Proposed method for calculating the mass of components for obtaining the melt of predetermined chemical composition using the model of initial and output data. The model takes into account the relationships between the required melt composition in the form of a multitude of chemical elements and a multitude of components, in turn the component is described as a set of chemical elements. Algorithms for checking the correctness of the initial data on the range of the number of components and chemical composition, determining the output set of components with subsequent correction for determining the minimum total cost, an algorithm for eliminating the excess of the chemical element in the melt are described. Results: The proposed method allows identifying at the initial stage of calculation the unacceptable values in the initial data. Algorithms are implemented in the form of a software product that can be used by small and medium business.

  • Keywords furnace charge, melt, automated calculation
  • Viewed: 322 Dowloaded: 4
  • Download Article
  • References

    Література
    1.    Trauzeddel, D. Prozessorientierte Mittelfrequenzofentechnik / D. Trauzeddel // Giesserei Rundschau. – 2014. – Jhg. 61, Heft 1/2. – S. 16-21.
    2.    Марукович, Е.И. Литейные сплавы и технологии / Е.И. Марукович, М.И. Карпенко. – Минск: Беларус. навука, 2012. – 442 с.
    3.    Ertl, W. Melting of large steel casting parts in the induction furnace / W. Ertl, E. Dötsch // Heat Processing. – 2015. – Issue 2. – PP. 103-107.
    4.    Сезгин, Э. Эффективность технологий плавки в печах производства фирмы EGES / Э. Сезгин // Литье и металлургия. – 2010. – № 3. – С. 147-148.
    5.    Мизгир, А.Г. Современные системы автоматизации процессов плавки стали в индукционных и электродуговых печах / А.Г. Мизгир, Р.Е. Аладьев // Литье и металлургия. – 2012. – № 3(67). – С. 258-259.
    6.    Saramak, D. Optimal production of electrolytic copper determined by the concentration and distribution of copper concentrates to smelters on the example of KGHM / D. Saramak // Archives of Metallurgy and Materials. – 2011. – Vol. 56, Issue 3. – PP. 619-626.
    7.    Программный комплекс для моделирования процесса выплавки коррозионностойких марок стали / Б.И. Леонович, В.В. Натальченко, Б.В. Ощепков, Е.А. Трофимов // Вестник Южно-Уральского государственного университета. Серия: Металлургия. – 2010. – №  13(189). – С. 19-23.
    8.    Применение электронных таблиц для расчета шихты при выплавке стали в ДСП фасонно-литейного цеха ОАО «Северсталь» / В.Л. Крохотин, Д.П. Михайлов, Л.М. Романов, А.Н. Болдин // Электрометаллургия. – 2003. – № 1. – С. 24-26.
    9.    Khaimovich, M.M. Automation of batch formula calculation / M.M. Khaimovich, K.Yu. Subbotin // Glass and Ceramics. – 2005. – Vol. 62, Issue 3. – PP. 109–112.
    10.    Михайлов, Д.П. Расчет шихты на единицу массы расплава заданного состава / Д.П. Михайлов, Л.М. Романов // Заготовительные производства в машиностроении. – 2007. – № 3. – С. 3-5.
    11.    A novel algorithm to scheduling optimization of melting-casting process in copper alloy strip production / X. Yan, Z. Zhang, J. Guo, etc. // Discrete Dynamics in Nature and Society. – 2015. – Vol. 2015. – 13 p.
    12.    Gill, P.E. Practical optimization / P.E. Gill, W. Murray, M.H. Wright. – Bingley: Emerald, 2008. – 401 p.
    13.    Sinha, S.M. Mathematical programming: Theory and methods / S.M. Sinha. – Delhi: Elsevier, 2006. – 572 p.
    14.    Petrova, S.S. The origin of the method of steepest descent / S.S. Petrova, A.D. Solov’ev // Historia Mathematica. – 1997. – Vol. 24, Issue 4. – PP. 361-375.

    References
    1.    Trauzeddel, D. (2014). Prozessorientierte Mittelfrequenzofentechnik. Giesserei Rundschau, 61(1/2), 16-21.
    2.    Marukovich, E.I., & Karpenko, M.I. (2012). Casting Alloys and Technologies. Minsk: Belarus. Navuka.
    3.    Ertl, W., & Dötsch, E. (2015). Melting of large steel casting parts in the induction furnace. Heat Processing, 2, 103-107.
    4.    Sezgtn, E. (2010). Efficiency of the melting technologies in furnaces of the company EGES Production. Foundry Production and Metallurgy, 3, 147-148.
    5.    Mizgir, A.G., & Aladjev, .E. (2012). Modern process automation system for melting steel in induction furnaces and electric arc furnaces. Foundry Production and Metallurgy, 3, 258-259.
    6.    Saramak, D. (2011). Optimal production of electrolytic copper determined by the concentration and distribution of copper concentrates to smelters on the example of KGHM. Archives of Metallurgy and Materials, 56(3), 619-626. DOI:10.2478/v10172-011-0067-z
    7.    Leonovich, B.I., Natalchenko, V.V., Oschepkov, B.V., & Trofimov, Е.A. (2010). The program complex for modeling process of corrosion-resisting steels smelting. Bulletin of the South Ural State University: Metallurgy, 13, 19-23.
    8.    Krokhotin, V.L., Mikhailov, D.P., Romanov, L.M., & Boldin, A.N. (2003). Application of spreadsheet tools for the calculation of charge during steel melting in EAF of steel foundry shop of JSC “Severstal”. Elektrometallurgiya, 1, 24-26.
    9.    Khaimovich, M.M., & Subbotin, K.Yu. (2005). Automation of batch formula calculation. Glass and Ceramics, 62(3), 109-112. DOI: 10.1007/s10717-005-0048-7
    10.    Mikhailov, D.P., & Romanov, L.M. (2007). Calculation of charge a per unit melt weight of an ordered composition. Blanking Productions in Mechanical Engineering, 3, 3-5.
    11.    Yan, X. Zhang, Z., Guo, J., Li, S., & Hu, K. (2015). A novel algorithm to scheduling optimization of melting-casting process in copper alloy strip production. Discrete Dynamics in Nature and Society, 2015, 147980. DOI:10.1155/2015/147980
    12.    Gill, P.E., Murray, W., & Wright, M.H. (2008). Practical Optimization. Bingley: Emerald.
    13.    Sinha, S.M. (2006). Mathematical Programming: Theory and Methods. Delhi: Elsevier.
    14.    Petrova, S.S., & Solov’ev, A.D. (1997). The origin of the method of steepest descent. Historia Mathematica, 24(4), 361-375. DOI:10.1006/hmat.1996.2146

  • Creative Commons License by Author(s)