Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Investigation of the influence of various factors on the power of heat exchange by radiation

  • Authors

    Korolyov Alexander V.
    Ishchenko Oleg P.

  • Subject

    ENERGETICS. HEAT ENGINEERING. ELECTRICAL ENGINEERING

  • Year 2017
    Issue 1(51)
    UDC 621.039.53
    DOI 10.15276/opu.1.51.2017.10
    Pages 52-60
  • Abstract

    The issue of lack of knowledge of radiation heat transfer process has been repeatedly raised in various studies. Despite the fact that works on study of heat transfer by radiation covers a wide range of different industries, it should be noted the lack of materials on study of heat exchange processes by radiation in a core of a nuclear reactor. In this work, the fuel assemblies of the VVER-1000 reactor were used as the bodies under study. Aim: The aim of the research is to investigate the heat exchange process between heat transfer assemblies and to study of the effect of changing the distance between the fuel assemblies on their power taking into account the inter-radiating of assemblies. Materials and Methods: A general description of the process of heat transfer by radiation. A calculation study of the effect of geometric parameters on heat transfer in the close lattice of the reactor core is performed. The influence of heat transfer by radiation on the temperature change of the fuel assemblies surface of the VVER-1000 reactor at change in the cassette gap is studied. The change in the power of the fuel assemblies relative to the initial power with a change in the cassette gap was studied. Experimental measurements of the temperature at different distances from the radiation source were made with an obstacle in the path of radiation propagation in the form of glass and water of different levels. The heat radiation and convective heat transfer are calculated based on the obtained experimental data. The calculation of thermal radiation power and convective heat transfer based on the obtained experimental data is performed. Results: The calculation results show that in models that determine the temperature of the fuel assemblies in the core of the VVER-1000 reactor, the radiation heat transfer must be taken into account. In this case, the amount of transferred energy is the greater, the smaller the distance between objects. This is observed depending on the distance between the fuel assemblies and their power. According to the results of the experiment, it is determined that the presence of water practically does not affect the power of heat exchange by radiation. This makes it possible not to take into account the presence of water in calculating the heat exchange between the fuel assemblies in the VVER-1000 reactor.

  • Keywords

    heat transfer by radiation, VVER-1000, fuel assembly, close lattice, geometric parameters

  • Viewed: 397 Dowloaded: 1
  • Download Article
  • References

    Література
    1.    Колдин, А.В. Исследование теплообмена в подвижном металлическом листе при струйном охлаждении / А.В. Колдин, Н.И. Платонов, В.П. Семенов // Вестник ЧелГУ. – 2008. – № 25(126). – С. 60-67.
    2.    Лиханов, В.А. Особенности теплообмена излучением в цилиндре дизелей при работе на газомоторном топливе / В.А. Лиханов, А.В. Россохин // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 10, Ч. 1. – С. 14-17.
    3.    Моторина, Т.А. Исследование теплообмена в фурменной зоне доменной печи при работе с применением угольного топлива (ПУТ) / Т.А. Моторина // Металлургия XXI столетия глазами молодых: всеукраинская научно-практическая конференция студентов: сборник докладов. – Донецк: ДонНТУ, 2013. – С. 128-129.
    4.    Lebrun, A. Non destructive assay of nuclear LEU spent fuels for burnup credit application / A. Lebrun, G. Bignan // Technical Committee Meeting on Implementation of Burnup Credit in Spent Fuel Management Systems, 10-14 Jul 2000, Vienna, Austria. – Vienna: IAEA, 2001. – PP. 251-268.
    5.    Afanasyev, A. WWER-1000 fuel cycle economical improvement by reaching high fuel burnup [Електронний ресурс] / A. Afanasyev // International Atomic Energy Agency (IAEA). – Режим доступу: https://inis.iaea.org/search/search.aspx?orig_q=RN:36040495 (Дата звертання: 28.11.2016).
    6.    Howell, J.R. Thermal radiation heat transfer / J.R. Howell, R. Siegel, M. Pinar Menguc. – 5th Ed. – Boca Raton: CRC Press, 2011. – 987 p.
    7.    Frost, B.R.T. Nuclear fuel elements: design, fabrication and performance / B.R.T. Frost. – Oxford: Pergamon Press, 1982. – 275 p.
    8.    Маргулова, Т.Х. Атомные электрические станции / Т.Х. Маргулова. – 4-е изд., перераб. и доп. – М.: Высш. шк., 1984. – 303 с.
    9.    Jevremovic, T. Nuclear principles in engineering / T. Jevremovic. – 2nd Ed. – New York: Springer, 2009. – 546 p.
    10.    Тугоплавкие материалы в машиностроении / под ред.: А.Т. Туманова, К.И. Портного. – М.: Машиностроение, 1967. – 392 с.
    11.    Королев, А.В. Особенности теплообмена на электрически обогреваемой проволоке в воздухе / А.В. Королев // Пр. Одес. політехн. ун-ту. – 2000. – Вип. 3(12). – С. 80-83.

    References
    1.    Koldin, A.V., Platonov, N.I., & Semenov, V.P. (2008). Study on heat transfer of a moving metal strip cooling by jet system. Bulletin of Chelyabinsk State University, 25, 60-67.
    2.    Likhanov, V.A., & Rossokhin, A.V. (2014). Peculiar properties of radiative heat transfer in the diesel cylinder operating on gas-engine fuel. International Journal of Applied and Fundamental Research, 10, 14-17.
    3.    Motorina, T.A. (2013). Research of heat transfer in a tuyere–raceway of a blast furnace when using coal fuel. In Proceedings of the All-Ukrainian Scientific-Practical Conference of Students “Metallurgy of the 21st Century through the Eyes of Young” (pp. 128-129). Donetsk: DonNTU.
    4.    Lebrun, A., & Bignan, G. (2001). Non destructive assay of nuclear LEU spent fuels for burnup credit application. In Proceedings of a Technical Committee Meeting on Implementation of Burnup Credit in Spent Fuel Management Systems (pp. 251-268). Vienna: IAEA.
    5.    Afanasyev, A. (2003). WWER-1000 fuel cycle economical improvement by reaching high fuel burnup. IAEA. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:36040495
    6.    Howell, J.R., Siegel, R., & Pinar Menguc, M. (2011). Thermal Radiation Heat Transfer (5th Ed.). Boca Raton: CRC Press.
    7.    Frost, B.R.T. (1982). Nuclear Fuel Elements: Design, Fabrication and Performance. Oxford: Pergamon Press.
    8.    Margulova, T.Kh. (1984). Nuclear Power Stations. Moscow: Vysshaya Shkola.
    9.    Jevremovic, T. (2009). Nuclear Principles in Engineering (2nd Ed.). New York: Springer.
    10.    Tumanov, A.T., & Portnoy, K.I. (Eds.). (1967). Refractory Materials in Mechanical Engineering. Moscow: Mashinostroenie.
    11.    Korolyov, A.V. (2000). Heat exchange peculiarities on electric heated wire in air. Odes’kyi Politechnichnyi Universytet. Pratsi, 3, 80-83.

  • Creative Commons License by Author(s)