Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Surface hardening of steel parts

  • Authors

    Alaa Fadhil І Idan
    Akimov Oleg V.
    Kostyk Kateryna O.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2017
    Issue 1(51)
    UDC 621.785.5:621.9.048.7
    DOI 10.15276/opu.1.51.2017.04
    Pages 17-23
  • Abstract

    Development of new resource-saving and cost-effective technologies of combined hardening of steel parts with a significant reduction of the process duration is an important and urgent task. Aim: The aim of the work is to create a technology for combined toughening of steel parts to provide high operational properties of the steel surface layer by intensifying the nitriding process through the laser pre-treatment of steel products. Materials and Methods: Materials for study are types of steels 40, 40Cr and 38Cr2MoAl. Laser treatment of steel was performed at the LATUS-31 installation. Nitriding carried out in the environment of fine nitrogen-containing substance with activators at a temperature of 530…560ºC during 2…3 hours. The nitriding process was carried out in the closed atmosphere in the chamber furnace without application of the protective atmospheres. Influence of laser pre-treatment and final nitriding on structure, thickness, phase structure, microhardness of surface layers of steel samples has been investigated. Results: It is shown that preliminary hardening by laser increases surface hardness in 0.88…1.15 times after nitriding, depending on brand of steel and speed of a laser beam movement, in comparison with steel nitriding in similar conditions. The combined treatment promotes significant increase in the strengthened layer – up to 0.49 mm for 40 steel type, up to 0.55 mm for 40Cr steel type and up to 0.65 mm for 38Cr2MoAl steel type.

  • Keywords

    surface hardening of steel, combined treatment, laser treatment, nitriding, surface hardness, thickness of the hardened layer

  • Viewed: 448 Dowloaded: 4
  • Download Article
  • References

    Література
    1.    Hahn, D.W. Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields / D.W. Hahn, N. Omenetto // Applied Spectroscopy. – 2012. – Vol. 66, Issue 4. – PP. 347-419.
    2.    Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses / M. Shimizu, M. Sakakura, M. Ohnishi, etc. // Journal of Applied Physics. – 2010. – Vol. 108, Issue 7. – P. 073533.
    3.    Influence of laser radiation on structure and properties of steel / O.V. Lobankova, I.Y. Zykov, A.G. Melnikov, S.B. Turanov // Proceedings of the International Conference on Advanced Materials, Structures and Mechanical Engineering, Incheon, South Korea, May 29-31, 2015. – London: CRC Press, 2016. – PP. 75-78.
    4.    Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation / H. Kenar, E. Akman, E. Kacar, etc. // Colloids and Surfaces B: Biointerfaces. – 2013. – Vol. 108. – PP. 305-312.
    5.    Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation / K. Okamuro, M. Hashida, Y. Miyasaka, etc. // Physical Review B. – 2010. – Vol. 82, Issue 16. – P. 165417.
    6.    Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser / B. Mahmoudi, M.J. Torkamany, A.R. Sabour Rouh Aghdam, J. Sabbaghzade // Materials & Design. – 2010. – Vol. 31, Issue 5. – PP. 2553-2560.
    7.    Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy / J. Yang, S. Sun, M. Brandt, W. Yan // Journal of Materials Processing Technology. – 2010. – Vol. 210, Issue 15. – PP. 2215-2222.
    8.    Исследование влияния режимов лазерной закалки на изменение свойств сталей / А.Ф.И. Идан, О.В. Акимов, Л.Ф. Головко [и др.] // Восточно-Европейского журнала передовых технологий. – 2016. – № 2/5 (80). – С. 69-73.
    9.    Assunção, E. Comparative study of laser welding in tailor blanks for the automotive industry / E. Assunção, L. Quintino, R. Miranda // The International Journal of Advanced Manufacturing Technology. – 2010. – Vol. 49, Issue 1. – PP. 123-131.
    10.    Моделирование глубины диффузионного слоя и поверхностной твердости стали при ионном азотировании / М.К. Моханад, В.О. Костик, Д.А. Демин, Е.А. Костик // Восточно-Европейского журнала передовых технологий. – 2016. – № 2/5 (80). – С. 45-49.
    11.    Kostyk, K. Development of innovative method of steel surface hardening by a combined chemical-thermal treatment / K. Kostyk // Eureka: Physics and Engineering. – 2016. – № 6. – PP. 46-52.
    12.    Пат. 2415964 Российская Федерация, МПК С23С 8/26. Способ низкотемпературного азотирования стальных деталей / Петрова Л.Г., Чудина О.В., Александров В.А., Брежнев А.А., Барабанов С.И.; патентообладатель Государственное образовательное учреждение высшего профессионального образования Московский автомобильно-дорожный институт (государственный технический университет). – № 2009139309/02; заявл. 26.10.2009; опубл. 10.04.2011; Бюл. № 10.
    13.    Пат. 25412 Україна, МПК С23С 8/02. Спосіб отримання зносостійких дискретних азотованих шарів / Кіндрачук М.В., Іщук Н.В., Писаренко В.М., Головко Л.Ф., Мутхі Собхі Яхья; заявник та патентовласник НТУУ «КПІ». – № u200703002; заяв. 22.03.2007; надр. 10.08.2007; Бюл. № 12.
    14.    Пат. 19551 Україна, МПК C23C 8/02. Спосіб комбінованої лазеро-хіміко-термічної обробки матеріалів / Іщук Н.В., Писаренко В.М., Кіндрачук М.В., Головко Л.Ф.; заявник та патентовласник НТУУ «КПІ». – № u200607450; заяв. 04.07.2006; надр. 15.12.2006; Бюл. № 12.

    References
    1.    Hahn, D.W., & Omenetto, N. (2012). Laser-induced breakdown spectroscopy (LIBS), Part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Applied Spectroscopy, 66(4), 347-419. DOI:10.1366/11-06574
    2.    Shimizu, M., Sakakura, M., Ohnishi, M., Shimotsuma, Y., Nakaya, T., Miura, K., & Hirao, K. (2010). Mechanism of heat-modification inside a glass after irradiation with high-repetition rate femtosecond laser pulses. Journal of Applied Physics, 108(7), 073533. DOI:10.1063/1.3483238
    3.    Lobankova, O.V., Zykov, I.Y., Melnikov, A.G., & Turanov, S.B. (2016). Influence of laser radiation on structure and properties of steel. In M. Kaloop (Ed.), Proceedings of the International Conference on Advanced Materials, Structures and Mechanical Engineering (pp. 75-78). London: CRC Press.
    4.    Kenara, H., Akman, E., Kacar, E., Demir, A., Park, H., Abdul-Khaliq, H., ..., Karaoz, E. (2013). Femtosecond laser treatment of 316L improves its surface nanoroughness and carbon content and promotes osseointegration: An in vitro evaluation. Colloids and Surfaces B: Biointerfaces, 108, 305-312. DOI:10.1016/j.colsurfb.2013.02.039
    5.    Okamuro, K., Hashida, M., Miyasaka, Y., Ikuta, Y., Tokita, S., & Sakabe, S. (2010). Laser fluence dependence of periodic grating structures formed on metal surfaces under femtosecond laser pulse irradiation. Physical Review B, 82(16), 165417. DOI:10.1103/PhysRevB.82.165417
    6.    Mahmoudi, B., Torkamany, M.J., Sabour Rouh Aghdam, A.R., & Sabbaghzade, J. (2010). Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser. Materials & Design, 31(5), 2553-2560. DOI:10.1016/j.matdes.2009.11.034
    7.    Yang, J., Sun, S., Brandt, M., & Yan, W. (2010). Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy. Journal of Materials Processing Technology, 210(15), 2215-2222. DOI:10.1016/j.jmatprotec.2010.08.007
    8.    Idan, A.F.I., Akimov, O., Golovko, L., Goncharuk, O., & Kostyk, K. (2016). The study of the influence of laser hardening conditions on the change in properties of steels. Eastern-European Journal of Enterprise Technologies, 2(5), 69-73. DOI:10.15587/1729-4061.2016.65455
    9.    Assunção, E., Quintino, L., & Miranda, R. (2010). Comparative study of laser welding in tailor blanks for the automotive industry. The International Journal of Advanced Manufacturing Technology, 49(1), 123-131. DOI: 10.1007/s00170-009-2385-0
    10.    Mohanad, M.K., Kostyk, V., Domin, D., & Kostyk, K. (2016). Modeling of the case depth and surface hardness of steel during ion nitriding. Eastern-European Journal of Enterprise Technologies, 2(5), 45-49. DOI:10.15587/1729-4061.2016.65454
    11.    Kostyk, K. (2016). Development of innovative method of steel surface hardening by a combined chemical-thermal treatment. Eureka: Physics and Engineering, 6, 46-52. DOI:10.21303/2461-4262.2016.00220
    12.    Moscow Automobile and Road Construction State Technical University. (2009). Procedure for steel part low temperature nitriding. Russian Patent: RU 2415964.
    13.    “Kyiv Polytechnical Institute” National Technical University of Ukraine. (2007). Method for obtaining of wearproof discrete nitrided layers. Ukraine Patent: UA 25412.
    14.    “Kyiv Polytechnical Institute” National Technical University of Ukraine. (2006). Method for combined laser-chemico-thermal treatment of materials. Ukraine Patent: UA 19551.

  • Creative Commons License by Author(s)