Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Fracture resistance of shell-steel reactor steel with mixed deformation modes for justification of extension of nuclear power plants lifetime

  • Authors

    Pokrovsky Volodymyr V.
    Sydiachenko Vyacheslav G.
    Ezhov Vitaliy M.

  • Subject

    MACHINE BUILDING. PROCESS METALLURGY. MATERIALS SCIENCE

  • Year 2017
    Issue 1(51)
    UDC 539.4
    DOI 10.15276/opu.1.51.2017.03
    Pages 7-16
  • Abstract

    Preliminary thermomechanical loading promotes increase of resistance to brittle fracture of heat-resistant steels with fractures and is the fundamental basis of the perspective method of increasing the resource for ensuring safe operation of power reactor corps. In existing standards for calculating the strength of equipment of nuclear power plants, the calculation for fracture toughness is performed only for plane opening mode of fracture (mode I), but the plane of the fracture can have an arbitrary orientation with respect to external forces. Aim: The aim of the research is an experimental study of the effect of the preliminary thermomechanical load under modes I and II on the fracture toughness for modes II and I of reactor steels, respectively, as well as the preliminary thermomechanical load under the I + III mode for the fracture toughness under the I + III mode. Materials and Methods: Experimental studies of static fracture resistance were performed on samples on four-point bending (mode II), on cylindrical specimens torsion (mode III), and on a modified compact sample with an oblique fracture (mode I + III) for 15Ch2NMFA(II) and 15Ch2MFA(II) steels. Results: It is shown that the fracture toughness characteristics for transverse and longitudinal displacements (modes II, III) are smaller than for normal detachment (mode I) at a test temperature exceeding the brittle-viscous transition temperature, and vice versa, more when the test temperature is lower. It was found that the preliminary thermomechanical load under mode II causes an increase in the fracture toughness under mode II and a reduction in the fracture toughness under mode I for tempering embrittlement reactor steels. Under these conditions, this index practically does not change for plastic reactor steels. The established patterns show the need to modify regulatory documents to assess the ultimate bearing capacity of structural elements with fractures, in particular, the shells of nuclear power reactors, equipment of the 1st and 2nd circuits, pipelines.

  • Keywords

    fracture toughness, mixed fracture modes, reactor steels, fracture toughness characteristics at transverse shear

  • Viewed: 443 Dowloaded: 6
  • Download Article
  • References

    Література
    1.    The influence of plastic prestraining on brittle fracture resistance of metallic materials with cracks / V.V. Pokrovsky, V.T. Troshchenko, G.A. Kopcmsky, etc. // Fatigue & Fracture of Engineering Materials & Structures. – 1995. – Vol. 18, Issue 6. – PP. 731-746.
    2.    A promising method for enhancing resistance of pressure vessels to brittle fracture / V.V. Pokrovsky, V.T. Troshchenko, V.G. Kaplunenko, etc. // International Journal of Pressure Vessels and Piping. – 1994. – Vol. 58, Issue 1. – PP. 9-24.
    3.    Timofeev, B.T. Calculated and experimental estimation of preliminary loading effect at elevated temperatures on fracture toughness of pressure vessel materials / B.T. Timofeev, V.I. Smirnov // International Journal of Pressure Vessels and Piping. – 1995. – Vol. 63, Issue 2. – PP. 135-140.
    4.    Chell, G.G. A theory of warm prestressing: Experimental validation and the implications for elastic plastic failure criteria // G.G. Chell, J.R. Haigh, V. Vitek // International Journal of Fracture. – 1981. – Vol. 17, Issue 1. – PP. 61-81.
    5.    Smith, D.J. The effects of warm pre-stressing on cleavage fracture. Part 1: Evaluation of experiments / D.J. Smith, S. Hadidimoud, H. Fowler // Engineering Fracture Mechanics. – 2004. – Vol. 71, Issues 13–14. – PP. 2015-2032.
    6.    Swankie, T.D. Low temperature mixed mode fracture of a pressure vessel steel subject to prior loading / T.D. Swankie, D.J. Smith // Engineering Fracture Mechanics. – 1998. – Vol. 61, Issues 3–4. – PP. 387-405.
    7.    Ayatollahi, M.R. Finite element analysis of a center crack specimen warm pre-stressed under different modes of loading / M.R. Ayatollahi, M. Mostafavi // Computational Materials Science. – 2007. – Vol. 38, Issue 4. – PP. 847-856.
    8.    Покровский, В.В. Прогнозирование влияния предварительного термомеханического нагружения на вязкость разрушения корпусных теплоустойчивых сталей при смешанных схемах деформирования / В.В. Покровский, В.Г. Сидяченко // Міцність матеріалів та елементів конструкцій: тези доп. міжнар. наук.-техн. конф., Київ, Україна, 28-30 вересня 2010 р.: в 2 т. / відп. ред. В.Т. Трощенко; НАН України, Ін-т проблем міцності ім. Г.С. Писаренка. – К.: ІПМіц. ім. Г.С. Писаренка НАН України, 2010. – С. 340-348.
    9.    Исследование закономерностей развития трещин при смешанных модах нагружения / В.В. Покровский, В.Н. Ежов, В.Г. Сидяченко Ю.И. Коваль // Механічна втома металів: Праці 13-го міжнародного колоквіуму (МВМ-2006), 25-28 вересня 2006 р., Тернопіль, Україна / відп. ред. В.Т. Трощенко. – Тернопіль: ТДТУ ім. І. Пулюя, 2006. – С. 259-265.
    10.    Сидяченко, В.Г. Методика исследования трещиностойкости реакторных сталей при смешанных I+II модах нагружения / В.Г. Сидяченко // Вісник НТУУ «КПІ». Серія: Машинобудування. – 2011. – Вип. 63. – С. 83-86.
    11.    Manoharan, M. Combined mode I - mode III fracture toughness of a high carbon steel / M. Manoharan, J.P. Hirth, A.R. Rosenfield // Scripta Metallurgica. – 1989. – Vol. 23, Issue 5. – PP. 763-766.
    12.    Шульженко, Н.Г. Задачи термопрочности, вибродиагностики и ресурса энергетических агрегатов: монография / Н.Г. Шульженко, П.П. Гонтаровский, Б.Ф. Зайцев. – Х.: ХНАДУ, 2011. – 444 c.
    13.    Pokrovskii, V.V. Influence of the modes of thermomechanical preloading on the resistance of heat-resistant steels to brittle fracture / V.V. Pokrovskii, А.G. Ivanchenko // Strength of Materials. – 1999. – Vol. 31, Issue 2. – PP. 200-209.
    14.    Panasyuk, V.V. Cyclic crack growth resistance of materials with mixed-mode macromechanisms of fracture / V.V. Panasyuk, Ya.L. Ivanytskyi, O.Ye. Andreykiv // Progress in Mechanical Behaviour of Materials: Proceedings of the 8th International Conference on Mechanical Behaviour of Materials (ICM8), 16-21 May 1999, Victoria, Canada. – Victoria: University of Victoria, 1999. – V. 1. – PP. 398-403.
    15.    Laukkanen, A. Ductile elastic-plastic mixed mode I-II crack propagation mechanisms and fracture resistance in metallic materials / A. Laukkanen // Proceedings of the 12th Bienniel Conference on Fracture, Fracture from Defects (ECF 12), 14-18 September 1998, Sheffield, UK. – West Midlands: Engineering Materials Advisory Services, 1998. – Vol. 2. – PP. 667-672.
    16.    Laukkanen, A. Evaluation of the effects of mixed mode I-II loading on elastic-plastic ductile fracture of metallic materials / A. Laukkanen, K. Wallin, R. Rintamaa // Mixed-Mode Crack Behavior. ASTM STP 1359 / ed. by K.J. Miller, D.L. McDowell. – West Conshohocken: ASTM, 1999. – PP. 3-20.

    References
    1.    Pokrovsky, V.V., Troshchenko, V.T., Kopcmsky, G.A., Kaplunenko, V.G., Fiodorov, V.G., & Dragunov, Yu.G. (1995). The influence of plastic prestraining on brittle fracture resistance of metallic materials with cracks. Fatigue & Fracture of Engineering Materials & Structures, 18(6), 731–746. DOI:10.1111/j.1460-2695.1995.tb00897.x
    2.    Pokrovsky, V.V., Troshchenko, V.T., Kaplunenko, V.G., Podkol’zin, V.Yu., Fiodorov, V.G., & Dragunov, Yu.G. (1994). A promising method for enhancing resistance of pressure vessels to brittle fracture. International International Journal of Pressure Vessels and Piping, 58(1), 9-24. DOI:10.1016/0308-0161(94)90003-5
    3.    Timofeev, B.T., & Smirnov, V.I. (1995). Calculated and experimental estimation of preliminary loading effect at elevated temperatures on fracture toughness of pressure vessel materials. International Journal of Pressure Vessels and Piping, 63(2), 135-140. DOI:10.1016/0308-0161(94)00028-H
    4.    Chell, G.G., Haigh, J.R., & Vitek, V. (1981). A theory of warm prestressing: Experimental validation and the implications for elastic plastic failure criteria. International Journal of Fracture, 17(1), 61-81. DOI:10.1007/BF00043121
    5.    Smith, D.J., Hadidimoud, S., & Fowler, H. (2004). The effects of warm pre-stressing on cleavage fracture. Part 1: evaluation of experiments. Engineering Fracture Mechanics, 71(13–14), 2015-2032. DOI:10.1016/j.engfracmech.2003.09.003
    6.    Swankie, T.D., & Smith, D.J. (1998).Low temperature mixed mode fracture of a pressure vessel steel subject to prior loading. Engineering Fracture Mechanics, 61(3–4), 387-405. DOI:10.1016/S0013-7944(98)00065-4
    7.    Ayatollahi, M.R., & Mostafavi, M. (2007). Finite element analysis of a center crack specimen warm pre-stressed under different modes of loading. Computational Materials Science, 38(4), 847-856. DOI:10.1016/j.commatsci.2006.06.001
    8.    Pokrovsky, V.V., & Sydiachenko, V.G. (2010). Prediction of influence of warm prestressing on the fracture toughness of heat resistant steels under mixed mode deformation. In V.T. Troshchenko (Ed.), Proceedings of the International Scientific and Technical Conference on Strength of Materials and Structure Elements (pp. 340-348). Kyiv: IPS, NAS of Ukraine.
    9.    Pokrovsky, V.V., Yezhov, V.N., Sydiachenko, V.G., & Koval, Yu.I. (2006). Investigation of crack growth behaviour under mixed mode loading. In V.T. Troshchenko (Ed.), Proceeding of the 13th International Colloquium on Mechanical Fatigue of Metals (MFM-2006) (pp. 259-265). Ternopil: TSTU.
    10.    Sydiachenko, V.G. (2011). Methodology of research of fracture toughness of the pressure vessels steels at mixed I+II mode loading. Journal of Mechanical Engineering of the NTUU “KPI”, 63, 83-86.
    11.    Manoharan, M., Hirth, J.P., & Rosenfield, A.R. (1989). Combined mode I - mode III fracture toughness of a high carbon steel. Scripta Metallurgica, 23(5), 763-766. DOI:10.1016/0036-9748(89)90527-9
    12.    Shulzhenko, N.G., Gontarovskiy, P.P., & Zaitsev, B.F. (2011). The Problems of the Thermal Strength, Vibrodisgnostics and Resource of Power Machinery. Kharkiv: KhNAHU.
    13.    Pokrovskii, V.V., & Ivanchenko, A.G. (1999). Influence of the modes of thermomechanical preloading on the resistance of heat-resistant steels to brittle fracture. Strength of Materials, 31(2), 200-209. DOI:10.1007/BF02511110
    14.    Panasyuk, V.V., Ivanytskyi, Ya.L., & Andreykiv, O.Ye. (1999). Cyclic crack growth resistance of materials with mixed-mode macromechanisms of fracture. In F. Ellyin, J.W. Provan (Eds.), Progress in Mechanical Behaviour of Materials: Proceedings of the 8th International Conference on Mechanical Behaviour of Materials (ICM8) (Vol. 1, pp. 398-403). Victoria: University of Victoria.
    15.    Laukkanen, A. (1998). Ductile elastic-plastic mixed mode I-II crack propagation mechanisms and fracture resistance in metallic materials. In M.W. Brown, E.R de los Rios, K.J. Miller (Eds.), Proceedings of the 12th Bienniel Conference on Fracture, Fracture from Defects (ECF 12) (Vol. II, pp. 667-672). West Midlands: Engineering Materials Advisory Services.
    16.    Laukkanen, A., Wallin, K., & Rintamaa, R. (1999). Evaluation of the effects of mixed mode I-II loading on elastic-plastic ductile fracture of metallic materials. In K.J. Miller, D.L. McDowell (Eds.), Mixed-Mode Crack Behavior. ASTM STP 1359 (pp. 3-20). West Conshohocken: ASTM.

  • Creative Commons License by Author(s)