Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    A basis of common approach to the development of universal steganalysis methods for digital images

  • Authors

    Kobozeva Alla А.

  • Subject

    COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

  • Year 2014
    Issue 2(44)
    UDC 004.056.5: 517.983.28
    DOI 10.15276/opu.2.44.2014.25
    Pages 136-146
  • Abstract

    In this paper a new common approach to the organization of steganalysis in digital images is developed. New features of formal parameters defining the image are identified, theoretically grounded and practically tested. For the first time characteristics of mutual disposition of the left and right singular vectors corresponding to the largest singular value of the matrix (block of matrix) of an image and the vector composed of the singular values obtained as a result of normal singular decomposition of the matrix (block matrix) are obtained. It is shown that for the majority of the blocks of the original image (regardless of the storage format — lossy, lossless) the angle between the left (right) singular vector and the vector composed of singular numbers is determined by the angle between the n-optimal vector and the standard space basis of the corresponding dimension. It is shown that the discovered feature is violated for the mentioned formal parameters in the disturbed image. This is an indicator of integrity violation, particularly steganotransformation, and it can be used to develop new universal steganalysis methods and algorithms. Their efficiency does not depend on the specifics of steganoalgorithm used for insertion of additional information.

  • Keywords

    digital image, matrix, singular value, singular vector, n-optimal vector, normal singular decomposition, image integrity, steganalysis method

  • Viewed: 889 Dowloaded: 12
  • Download Article
  • References

    Література
    1.    Стеганография, цифровые водяные знаки и стеганоанализ : монография / А.В. Аграновский, А.В. Балакин, В.Г. Грибунин, С.А. Сапожников. — М.: Вузовская книга, 2009. — 220 с.
    2.    Бобок, И.И. Стеганоанализ как частный случай анализа информационной системы / И.И. Бобок, А.А. Кобозева // Сучасна спеціальна техніка. — 2011. — № 2. — С. 21–34.
    3.    Natarajan, V. Blind image steganalysis based on contourlet transform / V. Natarajan, R. Anitha // International Journal on Cryptography & Information Security. — 2012. — Vol. 2, Issue 3. — PP. 77—87.
    4.    Gul, G. SVD-based universal spatial domain image steganalysis / G. Gul, F. Kurugollu // IEEE Transactions on Information Forensics and Security. — 2010. — Vol. 5, Issue 2. — PP. 349—353.
    5.    Gul, G. Steganalytic features for JPEG compression-based perturbed quantization / G. Gul, A.E. Dirik, I. Avcibas // IEEE Signal Processing Letters. — 2007. — Vol. 14, Issue 3. — PP. 205—208.
    6.    Image steganalysis with binary similarity measures / I. Avcibas, M. Kharrazi, N. Memon, B. Sankur // EURASIP Journal on Applied Signal Processing. — 2005. — Vol. 17. — PP. 2749—2757.
    7.    Agaian, S. Color wavelet based universal blind steganalysis / S. Agaian, H. Cai // The 2004 International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP’2004), September 11–12, 2004, Vienna, Austria. — 2004. — PP. 183—189.
    8.    Fridrich, J. Steganalysis of LSB encoding in color images / J. Fridrich, M. Long // IEEE International Conference on Multimedia and Expo, 30 Jul – 2 Aug 2000, New York, NY. — 2000. — Vol. 3. — PP. 1279—1282.
    9.    Кобозева, А.А. Анализ информационной безопасности: монография / А.А. Кобозева, В.А. Хорошко. — К.: ГУИКТ, 2009. — 251 с.
    10.    Кобозева, А.А. Общий подход к анализу состояния информационных объектов, основанный на теории возмущений / А.А. Кобозева // Вісник Східноукраїнського національного університету ім. В. Даля. — 2008. — № 8(126), Ч. 1. — С. 72—81.
    11.    Bergman, C. Unitary embedding for data hiding with the SVD / C. Bergman, J. Davidson // Proceedings of Security, Steganography, and Watermarking of Multimedia Contents VII. — 2005. — Vol. 5681. — РP. 619—630.
    12.    Кобозева, А.А. Анализ чувствительности сингулярных векторов матрицы изображения-контейнера как основа стеганоалгоритма, устойчивого к сжатию с потерями / А.А. Кобозева, М.А. Мельник // Захист інформації. — 2013. — Т. 15, № 2. — С. 88—96.
    13.    Гантмахер, Ф.Р. Теория матриц : монография / Ф.Р. Гантмахер. — 5-е изд. — М. : Физматлит, 2004. — 559 с.
    14.    NRCS Photo Gallery: [Электронный ресурс] // United States Department of Agriculture. Washington, USA. Режим доступа: http://photogallery.nrcs.usda.gov/res/sites/photogallery/ (Дата обращения: 01.09.2014).
    15.    Gkizeli, M. Optimal signature design for spread-spectrum steganography / M. Gkizeli, D.A. Pados, M.J. Medley // IEEE Transactions on Image Processing. — 2007. — Vol. 16, Issue 2. — РP. 391—405.

    References
    1.    Agranovskij, A.V., Balakin, A.V., Gribunin, V.G., & Sapozhnikov, S.A. (2009). Steganography, Digital Watermarking, and Steganalysis. Moscow: Vuzovskaya kniga.
    2.    Bobok, I.I., & Kobozeva, A.A. (2011). Steganalysis as a special case of the analysis of the information system. Suchasna Spetsialna Tekhnika, 2, 21—34.
    3.    Natarajan, V., & Anitha, R. (2012). Blind image steganalysis based on contourlet transform. International Journal on Cryptography & Information Security, 2(3), 77—87.
    4.    Gul, G., & Kurugollu, F. (2010). SVD-based universal spatial domain image steganalysis. IEEE Transactions on Information Forensics and Security, 5(2), 349—353.
    5.    Gul, G., Dirik, A.E., & Avcibas, I. (2007). Steganalytic features for JPEG compression-based perturbed quantization. IEEE Signal Processing Letters, 14(3), 205—208.
    6.    Avcibas, I., Kharrazi, M., Memon, N., & Sankur, B. (2005). Image steganalysis with binary similarity measures. EURASIP Journal on Applied Signal Processing, 17, 2749—2757.
    7.    Agaian, S., & Cai, H. (2004). Color wavelet based universal blind steganalysis. In J. Astola, K. Egiazarian, T. Saramäki (Eds.), Proceedings of the 2004 International TICSP Workshop on Spectral Methods and Multirate Signal Processing (SMMSP’2004) (pp. 183—189). Tampere, Finland : Tampere University of Technology.
    8.    Fridrich, J., & Long, M. (2000). Steganalysis of LSB encoding in color images. In Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2000) (pp. 1279—1282). Piscataway, NJ : IEEE Service Center.
    9.    Kobozeva, A.A., & Khoroshko, V.A. (2009). Analysis of Information Security. Kyiv: DUIKT.
    10.    Kobozeva, A.A. (2008). The general approach to the analysis of the state of the information objects based on perturbation theory. Bulletin of Volodymyr Dahl East Ukrainian National University, 8(1), 72—81.
    11.    Bergman, C., & Davidson, J. (2005). Unitary embedding for data hiding with the SVD. In E.J. Delp III, P.W. Wong (Eds.), Proc. SPIE 5681, Security, Steganography, and Watermarking of Multimedia Contents VII (pp. 619—630). Bellingham, Wash. : SPIE ; Springfield, Va. : IS&T.
    12.    Kobozeva, A., & Melnik, M. (2013). Sensitivity analysis of singular vectors of cover matrix as basis of steganography algorithm, that steady to lossy compression. Ukrainian Information Security Research Journal, 15(2), 88—96.
    13.    Gantmakher, F.R. (2000). The Theory of Matrices. Providence, R.I.: AMS Chelsea Pub. (Original work published 1959)
    14.    USDA : United States Department of Agriculture (n.d.). NRCS Photo Gallery. United States Department of Agriculture. Retrieved from http://photogallery.nrcs.usda.gov/res/sites/photogallery/
    15.    Gkizeli, M., Pados, D.A., & Medley, M.J. (2007). Optimal signature design for spread-spectrum steganography. IEEE Transactions on Image Processing, 16(2), 391—405.

  • Creative Commons License by Author(s)