Ваш браузер устарел.

Для того, чтобы использовать все возможности сайта, загрузите и установите один из этих браузеров.

скрыть

Article

  • Title

    Analytical study of electromagnetic wave propagation in the finite homogeneous lines

  • Authors

    Dmitrieva Iryna Yu.

  • Subject

    ELECTRONICS. RADIO ENGINEERING. TELECOMMUNICATION FACILITIES

  • Year 2014
    Issue 1(43)
    UDC 621.371+537.8:621.372
    DOI 10.15276/opu.1.43.2014.36
    Pages 212-218
  • Abstract

    Suggested results represent the particular part of the general scientific tendency dealing with mathematical modeling and analytical study of electromagnetic field phenomena described by the systems of PDEs (partial differential equations). Specific electrodynamic engineering process is given by the differential Maxwell system whose effective research implies correct theoretical and physical statement in terms of the general wave PDE regarding all field intensities. Basing on this equation, the corresponding boundary problem determines electromagnetic wave propagation in the isotropic homogeneous finite lines under expofunctional excitations and arbitrary large time intervals. Explicit solution of the aforesaid problem is found using inverse matrix operator construction and the integral transform method. Solvability criterion is also proved, supporting correctness of the physical / engineering conditions and mathematical computing technique. Proposed analytic approach represents part of the general investigating electromagnetic field behavior for arbitrary media in detail.
    Keywords: Maxwell differential system, general wave equation, boundary problem regarding electromagnetic field intensities.

  • Keywords
  • Viewed: 1013 Dowloaded: 1
  • Download Article
  • References

    Література
    1.    Proceedings of the International Scientific Conference on the Mathematical Methods in Electromag-netic Theory (MMET 12), Kharkov, August 2012. — Danvers: IEEE, 2012. — 594 p.
    2.    DmitrievaI.Yu. Diagonalization of the differential operator matrix in the case of the multidimen-sional circuits / I.Yu. Dmitrieva, A.M. Ivanitckiy // НауковіпраціОНАЗім. О.С. Попова. — 2009. — № 1. — С. 36 — 51.
    3.    Иваницкий, А.М. Зависимость третьего и четвертого уравнений Максвелла от первых двух при произвольном возбуждении электромагнитного поля / А.М. Иваницкий // Наукові праці ОНАЗ ім. О.С. Попова. — 2004. — № 2. — С. 3 — 7.
    4.    Dmitrieva, I.Yu. Signal propagation in semi-infinite lines and its mathematical representation / I.Yu. Dmitrieva // ПраціОдеськогополітехнічногоуніверситету. — Одеса, 2013 — Вип. 2(41). — С.  261 — 266.
    5.    Dmitrieva, I. Mathematical modeling of wave propagation in the finite homogeneous lines / I. Dmitrieva // Hyperion International Journal of Econophysics & New Economy. — 2013. — Vol. 6, Iss. 2. — PP. 219 — 229.
    6.    Дмитрієва, І.Ю. Поширенняелектромагнітниххвильводноріднихлініяхприекспофункціональнихвпливах / І.Ю. Дмитрієва // НауковіпраціОНАЗім. О.С. Попова. —2013. — № 1. — С. 77 — 82.

    References
    1.    Proceedings of the International Scientific Conference on the Mathematical Methods in Electromagnetic Theory (MMET 12), Kharkov, August 2012. — Danvers: IEEE, 2012. — 594 p.
    2.    DmitrievaI.Yu. Diagonalization of the differential operator matrix in the case of the multidimensional circuits / I.Yu. Dmitrieva, A.M. Ivanitskiy // Naukovi pratsi ONAZ im. O.S. Popova [Proceedings of ONUC]. — 2009. — # 1. — pp. 36 — 51.
    3.    Ivanitskiy, A.M. Zavisimost’ tre’ego I chetvertogo uravneniy Maksvella ot pervykh dvukh pri proizvol’nom vozbuzhdenii elektromagnitnogo polya [Dependence of the third and fourth Maxwell equations upon the first two at arbitrary excitation of electromagnetic field] / A.M. Ivanitskiy // Naukovi pratsi ONAZ im. O.S. Popova [Proceedings of ONUC]. — 2004. — # 2. — pp. 3 — 7.
    4.    Dmitrieva, I.Yu. Signal propagation in semi-infinite lines and its mathematical representation / I.Yu. Dmitrieva // Pratsi Odeskoho politekhnichnoho universytetu [Proceedings of Odesa Polytechnic University]. — Odesa, 2013 — Iss. 2(41). — pp.  261 — 266.
    5.    Dmitrieva, I. Mathematical modeling of wave propagation in the finite homogeneous lines / I. Dmitrieva // Hyperion International Journal of Econophysics & New Economy. — 2013. — Vol. 6, Iss. 2. — pp. 219 — 229.
    6.    Dmytriieva, I.Yu. Poshyrennia elektromahnitnykh khvyl v odnoridnykh liniiakh pry ekspofunktsionalnykh vplyvakh [Electromagnetic wave propagation in the homogeneous linesunder expofunctional excitations] / I.Yu. Dmytriieva // Naukovi pratsi ONAZ im. O.S. Popova [Proceedings of ONUC]. —2013. — # 1. — pp. 77 — 82.

  • Creative Commons License by Author(s)